纺锤体检查点:细胞如何延迟后期发作?

SEB experimental biology series Pub Date : 2008-01-01
Matylda M Sczaniecka, Kevin G Hardwick
{"title":"纺锤体检查点:细胞如何延迟后期发作?","authors":"Matylda M Sczaniecka,&nbsp;Kevin G Hardwick","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Several models have been suggested above, describing possible modes of spindle checkpoint action: 1. Cdc20 sequestration (by Mad2-Cdc20 and/or MCC). 2. Stable MCC-APC/C association. 3. Cdc20 turnover (in budding yeast). 4. Cdc20-APC/C modification (by Mps1, Bub1, MAPK, Aurora B or BubR1 kinases). Several of these mechanisms could affect APC/C activity by modifying, competing for, and/or blocking the binding site(s) for its substrates. Alternatively, they could reduce the processivity of ubiquitination of substrates, or prevent the release of substrates and thereby reduce substrate turnover. Indeed, the processivity of ubiquitination can determine the order of destruction of APC/C substrates (Rape et al., 2006). Most substrates require multiple APC/C binding events in order to build polyubiquitin chains, and only polyubiquitinated substrates are recognised by the 26S proteasome for destruction. Thus, if the processivity of ubiquitination or the turnover of APC/C substrates were impaired in mitosis, the degradation of securin and cyclin would no longer take place, which would result in mitotic arrest. Our results have highlighted the importance of Mad3 as an anaphase inhibitor, and suggest that it usually acts in concert with Mad2 to efficiently inhibit Cdc20-APC/C. Further experiments are necessary to fully understand their mechanism of action, and this will require a wide range of approaches including dynamic studies of the 'flux' of Mad2 and BubR1 through signalling scaffolds, further structural insights, the identification of important phosphorylation sites on both the checkpoint proteins and Cdc20-APC/C, and an in vitro reconstitution of MCC inhibition of the APC/C. We look forward to seeing the complex regulation of mitotic progression being described over the coming years.</p>","PeriodicalId":87484,"journal":{"name":"SEB experimental biology series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spindle checkpoint: how do cells delay anaphase onset?\",\"authors\":\"Matylda M Sczaniecka,&nbsp;Kevin G Hardwick\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several models have been suggested above, describing possible modes of spindle checkpoint action: 1. Cdc20 sequestration (by Mad2-Cdc20 and/or MCC). 2. Stable MCC-APC/C association. 3. Cdc20 turnover (in budding yeast). 4. Cdc20-APC/C modification (by Mps1, Bub1, MAPK, Aurora B or BubR1 kinases). Several of these mechanisms could affect APC/C activity by modifying, competing for, and/or blocking the binding site(s) for its substrates. Alternatively, they could reduce the processivity of ubiquitination of substrates, or prevent the release of substrates and thereby reduce substrate turnover. Indeed, the processivity of ubiquitination can determine the order of destruction of APC/C substrates (Rape et al., 2006). Most substrates require multiple APC/C binding events in order to build polyubiquitin chains, and only polyubiquitinated substrates are recognised by the 26S proteasome for destruction. Thus, if the processivity of ubiquitination or the turnover of APC/C substrates were impaired in mitosis, the degradation of securin and cyclin would no longer take place, which would result in mitotic arrest. Our results have highlighted the importance of Mad3 as an anaphase inhibitor, and suggest that it usually acts in concert with Mad2 to efficiently inhibit Cdc20-APC/C. Further experiments are necessary to fully understand their mechanism of action, and this will require a wide range of approaches including dynamic studies of the 'flux' of Mad2 and BubR1 through signalling scaffolds, further structural insights, the identification of important phosphorylation sites on both the checkpoint proteins and Cdc20-APC/C, and an in vitro reconstitution of MCC inhibition of the APC/C. We look forward to seeing the complex regulation of mitotic progression being described over the coming years.</p>\",\"PeriodicalId\":87484,\"journal\":{\"name\":\"SEB experimental biology series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEB experimental biology series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEB experimental biology series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上面提出了几种模型,描述了纺锤体检查点作用的可能模式:Cdc20封存(通过Mad2-Cdc20和/或MCC)。2. 稳定的MCC-APC/C关联。3.Cdc20的周转(在出芽酵母中)。4. Cdc20-APC/C修饰(Mps1, Bub1, MAPK, Aurora B或BubR1激酶)。其中一些机制可以通过改变、竞争和/或阻断其底物的结合位点来影响APC/C的活性。或者,它们可以降低底物泛素化的进程,或阻止底物的释放,从而减少底物的周转。事实上,泛素化的进程可以决定APC/C底物的破坏顺序(Rape et al., 2006)。大多数底物需要多个APC/C结合事件才能构建多泛素链,只有多泛素化底物才能被26S蛋白酶体识别并破坏。因此,如果在有丝分裂过程中泛素化的进程或APC/C底物的周转被破坏,securin和cyclin的降解将不再发生,这将导致有丝分裂停滞。我们的研究结果强调了Mad3作为后期抑制剂的重要性,并表明它通常与Mad2协同作用以有效抑制Cdc20-APC/C。为了充分了解它们的作用机制,还需要进一步的实验,这将需要广泛的方法,包括通过信号支架对Mad2和BubR1的“通量”进行动态研究,进一步的结构洞察,鉴定检查点蛋白和Cdc20-APC/C上重要的磷酸化位点,以及体外重建MCC对APC/C的抑制。我们期待在未来几年看到有丝分裂过程的复杂调控被描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The spindle checkpoint: how do cells delay anaphase onset?

Several models have been suggested above, describing possible modes of spindle checkpoint action: 1. Cdc20 sequestration (by Mad2-Cdc20 and/or MCC). 2. Stable MCC-APC/C association. 3. Cdc20 turnover (in budding yeast). 4. Cdc20-APC/C modification (by Mps1, Bub1, MAPK, Aurora B or BubR1 kinases). Several of these mechanisms could affect APC/C activity by modifying, competing for, and/or blocking the binding site(s) for its substrates. Alternatively, they could reduce the processivity of ubiquitination of substrates, or prevent the release of substrates and thereby reduce substrate turnover. Indeed, the processivity of ubiquitination can determine the order of destruction of APC/C substrates (Rape et al., 2006). Most substrates require multiple APC/C binding events in order to build polyubiquitin chains, and only polyubiquitinated substrates are recognised by the 26S proteasome for destruction. Thus, if the processivity of ubiquitination or the turnover of APC/C substrates were impaired in mitosis, the degradation of securin and cyclin would no longer take place, which would result in mitotic arrest. Our results have highlighted the importance of Mad3 as an anaphase inhibitor, and suggest that it usually acts in concert with Mad2 to efficiently inhibit Cdc20-APC/C. Further experiments are necessary to fully understand their mechanism of action, and this will require a wide range of approaches including dynamic studies of the 'flux' of Mad2 and BubR1 through signalling scaffolds, further structural insights, the identification of important phosphorylation sites on both the checkpoint proteins and Cdc20-APC/C, and an in vitro reconstitution of MCC inhibition of the APC/C. We look forward to seeing the complex regulation of mitotic progression being described over the coming years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative genomics and drug discovery in trypanosomatids. 'Omics' in translational medicine: are they lost in translation? Discovery of novel sodium channel inhibitors: a gene family-based approach. The relevance of host genes in malaria. Drug-target discovery in silico: using the web to identify novel molecular targets for drug action.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1