神经调节蛋白和神经元可塑性:可能与精神分裂症相关。

Andrés Buonanno, Oh-Bin Kwon, Leqin Yan, Carmen Gonzalez, Marines Longart, Dax Hoffman, Detlef Vullhorst
{"title":"神经调节蛋白和神经元可塑性:可能与精神分裂症相关。","authors":"Andrés Buonanno,&nbsp;Oh-Bin Kwon,&nbsp;Leqin Yan,&nbsp;Carmen Gonzalez,&nbsp;Marines Longart,&nbsp;Dax Hoffman,&nbsp;Detlef Vullhorst","doi":"10.1002/9780470751251.ch13","DOIUrl":null,"url":null,"abstract":"<p><p>Polymorphisms in the Neuregulin 1 (NRG1) and ErbB4 receptor genes have been associated with schizophrenia in numerous cohort and family studies, and biochemical measurements from postmortem prefrontal cortex homogenates suggest that NRG/ErbB signalling is altered in schizophrenia. Moreover, recent work from our group, and from others, indicates that NRG/ErbB signalling has a role in regulating glutamatergic transmission--an intriguing finding given that glutamatergic hypofunction has been proposed to be involved in the pathogenesis underlying schizophrenia. Here we will provide a brief background of the complexity of the NRG/ErbB signalling system. We will then focus on how NRG1 reverses (depotentiates) long-term potentiation (LTP) at hippocampal Schaeffer collateral--CA1 glutamatergic synapses in the adult brain. Specifically, we found that NRG1 depotentiates LTP in an activity- and time-dependent manner. A role of endogenous NRG for regulating plasticity at hippocampal synapses is supported by experiments demonstrating that ErbB receptor antagonists completely block LTP depotentiation by brief theta-pulse stimuli, a subthreshold stimulus paradigm that reverses LTP in live animals. Preliminary results indicate that NRG1-mediated LTP depotentiation is NMDA receptor independent, and manifests as an internalization of GluR1-containing AMPA receptors. The importance of the NRG/ ErbB signalling pathway in regulating homeostasis at glutamatergic synapses, and its possible implications for schizophrenia, will be discussed.</p>","PeriodicalId":19323,"journal":{"name":"Novartis Foundation Symposium","volume":"289 ","pages":"165-77; discussion 177-9, 193-5"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Neuregulins and neuronal plasticity: possible relevance in schizophrenia.\",\"authors\":\"Andrés Buonanno,&nbsp;Oh-Bin Kwon,&nbsp;Leqin Yan,&nbsp;Carmen Gonzalez,&nbsp;Marines Longart,&nbsp;Dax Hoffman,&nbsp;Detlef Vullhorst\",\"doi\":\"10.1002/9780470751251.ch13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymorphisms in the Neuregulin 1 (NRG1) and ErbB4 receptor genes have been associated with schizophrenia in numerous cohort and family studies, and biochemical measurements from postmortem prefrontal cortex homogenates suggest that NRG/ErbB signalling is altered in schizophrenia. Moreover, recent work from our group, and from others, indicates that NRG/ErbB signalling has a role in regulating glutamatergic transmission--an intriguing finding given that glutamatergic hypofunction has been proposed to be involved in the pathogenesis underlying schizophrenia. Here we will provide a brief background of the complexity of the NRG/ErbB signalling system. We will then focus on how NRG1 reverses (depotentiates) long-term potentiation (LTP) at hippocampal Schaeffer collateral--CA1 glutamatergic synapses in the adult brain. Specifically, we found that NRG1 depotentiates LTP in an activity- and time-dependent manner. A role of endogenous NRG for regulating plasticity at hippocampal synapses is supported by experiments demonstrating that ErbB receptor antagonists completely block LTP depotentiation by brief theta-pulse stimuli, a subthreshold stimulus paradigm that reverses LTP in live animals. Preliminary results indicate that NRG1-mediated LTP depotentiation is NMDA receptor independent, and manifests as an internalization of GluR1-containing AMPA receptors. The importance of the NRG/ ErbB signalling pathway in regulating homeostasis at glutamatergic synapses, and its possible implications for schizophrenia, will be discussed.</p>\",\"PeriodicalId\":19323,\"journal\":{\"name\":\"Novartis Foundation Symposium\",\"volume\":\"289 \",\"pages\":\"165-77; discussion 177-9, 193-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novartis Foundation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9780470751251.ch13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novartis Foundation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470751251.ch13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在许多队列和家族研究中,神经调节蛋白1 (NRG1)和ErbB4受体基因的多态性与精神分裂症有关,死后前额皮质匀浆的生化测量表明,NRG/ErbB信号传导在精神分裂症中发生了改变。此外,我们小组和其他人最近的工作表明,NRG/ErbB信号传导在调节谷氨酸能传递中起作用——这是一个有趣的发现,因为谷氨酸能功能低下被认为与精神分裂症的发病机制有关。在这里,我们将简要介绍NRG/ErbB信号系统的复杂性背景。然后,我们将重点关注NRG1如何逆转(去增强)成人大脑海马谢弗侧枝-CA1谷氨酸突触的长期增强(LTP)。具体来说,我们发现NRG1以活动和时间依赖的方式减弱LTP。内源性NRG在调节海马突触可塑性方面的作用得到了实验的支持,实验表明,ErbB受体拮抗剂通过短暂的θ脉冲刺激完全阻断LTP去增强,这是一种阈下刺激范式,可逆转活体动物的LTP。初步结果表明nrg1介导的LTP失能与NMDA受体无关,表现为含glur1的AMPA受体的内化。我们将讨论NRG/ ErbB信号通路在调节谷氨酸突触内稳态中的重要性,以及它对精神分裂症的可能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuregulins and neuronal plasticity: possible relevance in schizophrenia.

Polymorphisms in the Neuregulin 1 (NRG1) and ErbB4 receptor genes have been associated with schizophrenia in numerous cohort and family studies, and biochemical measurements from postmortem prefrontal cortex homogenates suggest that NRG/ErbB signalling is altered in schizophrenia. Moreover, recent work from our group, and from others, indicates that NRG/ErbB signalling has a role in regulating glutamatergic transmission--an intriguing finding given that glutamatergic hypofunction has been proposed to be involved in the pathogenesis underlying schizophrenia. Here we will provide a brief background of the complexity of the NRG/ErbB signalling system. We will then focus on how NRG1 reverses (depotentiates) long-term potentiation (LTP) at hippocampal Schaeffer collateral--CA1 glutamatergic synapses in the adult brain. Specifically, we found that NRG1 depotentiates LTP in an activity- and time-dependent manner. A role of endogenous NRG for regulating plasticity at hippocampal synapses is supported by experiments demonstrating that ErbB receptor antagonists completely block LTP depotentiation by brief theta-pulse stimuli, a subthreshold stimulus paradigm that reverses LTP in live animals. Preliminary results indicate that NRG1-mediated LTP depotentiation is NMDA receptor independent, and manifests as an internalization of GluR1-containing AMPA receptors. The importance of the NRG/ ErbB signalling pathway in regulating homeostasis at glutamatergic synapses, and its possible implications for schizophrenia, will be discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Cardiovascular disease. Normal and neoplastic stem cells. Outer mitochondrial membrane protein degradation by the proteasome. New insights into the role of pendrin (SLC26A4) in inner ear fluid homeostasis. Interaction of prestin (SLC26A5) with monovalent intracellular anions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1