使用改进的非辐射YFP对单个树突棘进行高灵敏度和定量的FRET-FLIM成像。

Brain cell biology Pub Date : 2008-08-01 Epub Date: 2008-05-30 DOI:10.1007/s11068-008-9024-9
Hideji Murakoshi, Seok-Jin Lee, Ryohei Yasuda
{"title":"使用改进的非辐射YFP对单个树突棘进行高灵敏度和定量的FRET-FLIM成像。","authors":"Hideji Murakoshi,&nbsp;Seok-Jin Lee,&nbsp;Ryohei Yasuda","doi":"10.1007/s11068-008-9024-9","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their \"darkness,\" and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP-REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by approximately 50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP-mRFP or mEGFP-original REACh pair by approximately 50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP-sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein-protein interactions in individual dendritic spines in brain slices with high sensitivity.</p>","PeriodicalId":72445,"journal":{"name":"Brain cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-008-9024-9","citationCount":"140","resultStr":"{\"title\":\"Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.\",\"authors\":\"Hideji Murakoshi,&nbsp;Seok-Jin Lee,&nbsp;Ryohei Yasuda\",\"doi\":\"10.1007/s11068-008-9024-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their \\\"darkness,\\\" and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP-REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by approximately 50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP-mRFP or mEGFP-original REACh pair by approximately 50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP-sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein-protein interactions in individual dendritic spines in brain slices with high sensitivity.</p>\",\"PeriodicalId\":72445,\"journal\":{\"name\":\"Brain cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11068-008-9024-9\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain cell biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11068-008-9024-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2008/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-008-9024-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140

摘要

双光子荧光寿命成像显微镜(TPFLIM)能够定量测量荧光共振能量转移(FRET)在小亚细胞区室的光散射组织。我们评估并优化了mEGFP (A206K突变的单体EGFP)和REACh(非辐射型YFP变体)对TPFLIM的FRET配对。我们根据REACh的“黑暗”和它们在海拉细胞和海马神经元中作为mEGFP的FRET受体的能力来表征它们的几个突变体。由于常用的单体突变A206K增加了REACh的亮度,我们引入了不影响亮度的不同单体突变(F223R)。此外,我们发现,通过mEGFP-REACh串联二聚体的荧光寿命测量,原始REACh的折叠效率很低,并且在细胞之间变化。在REACh中引入两个折叠突变(F46L, Q69M),折叠效率提高了约50%,并降低了FRET信号的变异性。与mEGFP- mrfp或mEGFP-原始REACh对相比,将mEGFP与新的REACh (super-REACh,或sREACh)配对可将信噪比提高约50%。利用这一新对,我们证明了肌动蛋白单体在单个树突棘中呈丝状和球状形式的比例可以以高灵敏度定量测量。因此,mEGFP-sREACh对适用于TPFLIM定量FRET测量,并使我们能够以高灵敏度测量脑切片中单个树突棘中的蛋白质-蛋白质相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.

Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their "darkness," and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP-REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by approximately 50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP-mRFP or mEGFP-original REACh pair by approximately 50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP-sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein-protein interactions in individual dendritic spines in brain slices with high sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Hello, goodbye. Imaging activity of neuronal populations with new long-wavelength voltage-sensitive dyes. Differences in c-jun and nNOS expression levels in motoneurons following different kinds of axonal injury in adult rats. Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1 O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1