小鼠肺功能的关联研究。

K Ganguly, H Schulz
{"title":"小鼠肺功能的关联研究。","authors":"K Ganguly,&nbsp;H Schulz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and an accelerating decline of lung function is the earliest and a major indicator of the onset of COPD. Therefore it has become necessary to understand the genetic basis of this complex physiological trait in order to determine the potential susceptibility factors of this disease. REINHARD et al (2005) performed the genome wide linkage analysis study with inbred mice having extremely divergent lung function (C3H/HeJ versus JF1/Msf) and identified multiple Quantitative Trait Loci (QTLs) on mouse chromosomes (mCh) 5, 15, 17, and 19 with Logarithm of odd (LOD) scores > or = 4. Significant linkages to total lung capacity (TLC) were detected on mCh 15 and 17, to dead space volume (VD) and lung compliance (C(L)) on mCh 5 and 15, to C(L) on mCh 19, and to diffusing capacity for CO (D(co)) on mCh 15 and 17. Several of the mouse chromosomal regions identified were syntenic to human chromosomal regions identified with linkage to FEV1 (forced expiratory volume-1 second), FVC (forced vital capacity), or FEV1/FVC in separate studies. Using a systematic approach of expression QTL (e-QTL) strategy and exon-wise sequencing of suggested candidate genes followed by predicted protein structure and property, GANGULY et al (2007) recently proposed four candidate genes for lung function in mice. They are superoxide dismutase 3, extracellular [SOD3; mCh 5: V(D)], trefoil factor 2 (TFF2; mCh 17: TLC and D(co)), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; mCh 15:TLC and C(L)), and relaxin 1 (RLN1; mCh 19; CL and CL/TLC). As a part of functional validation, gene-targeted Sod3-/- mice were detected with increased conducting airway volume (V(D)/TLC) compared with strain-matched control Sod3+/+ mice, consistent with the QTL on mCh 5. Findings with gene-targeted mice suggested that SOD3 is a contributing factor defining the complex trait of conducting airway volume. The human variation in these genes needs further study both in lung development and in the development of lung disease as a part of translational approach.</p>","PeriodicalId":49278,"journal":{"name":"Dtw. Deutsche Tierärztliche Wochenschrift","volume":"115 7","pages":"276-84"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association studies of lung function in mice.\",\"authors\":\"K Ganguly,&nbsp;H Schulz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and an accelerating decline of lung function is the earliest and a major indicator of the onset of COPD. Therefore it has become necessary to understand the genetic basis of this complex physiological trait in order to determine the potential susceptibility factors of this disease. REINHARD et al (2005) performed the genome wide linkage analysis study with inbred mice having extremely divergent lung function (C3H/HeJ versus JF1/Msf) and identified multiple Quantitative Trait Loci (QTLs) on mouse chromosomes (mCh) 5, 15, 17, and 19 with Logarithm of odd (LOD) scores > or = 4. Significant linkages to total lung capacity (TLC) were detected on mCh 15 and 17, to dead space volume (VD) and lung compliance (C(L)) on mCh 5 and 15, to C(L) on mCh 19, and to diffusing capacity for CO (D(co)) on mCh 15 and 17. Several of the mouse chromosomal regions identified were syntenic to human chromosomal regions identified with linkage to FEV1 (forced expiratory volume-1 second), FVC (forced vital capacity), or FEV1/FVC in separate studies. Using a systematic approach of expression QTL (e-QTL) strategy and exon-wise sequencing of suggested candidate genes followed by predicted protein structure and property, GANGULY et al (2007) recently proposed four candidate genes for lung function in mice. They are superoxide dismutase 3, extracellular [SOD3; mCh 5: V(D)], trefoil factor 2 (TFF2; mCh 17: TLC and D(co)), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; mCh 15:TLC and C(L)), and relaxin 1 (RLN1; mCh 19; CL and CL/TLC). As a part of functional validation, gene-targeted Sod3-/- mice were detected with increased conducting airway volume (V(D)/TLC) compared with strain-matched control Sod3+/+ mice, consistent with the QTL on mCh 5. Findings with gene-targeted mice suggested that SOD3 is a contributing factor defining the complex trait of conducting airway volume. The human variation in these genes needs further study both in lung development and in the development of lung disease as a part of translational approach.</p>\",\"PeriodicalId\":49278,\"journal\":{\"name\":\"Dtw. Deutsche Tierärztliche Wochenschrift\",\"volume\":\"115 7\",\"pages\":\"276-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dtw. Deutsche Tierärztliche Wochenschrift\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dtw. Deutsche Tierärztliche Wochenschrift","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

慢性阻塞性肺疾病(COPD)是全球第四大死亡原因,肺功能的加速下降是COPD发病的最早和主要指标。因此,有必要了解这一复杂生理性状的遗传基础,以确定该病的潜在易感因素。REINHARD等(2005)对肺功能差异极大的近交系小鼠(C3H/HeJ与JF1/Msf)进行了全基因组连锁分析研究,并在小鼠染色体(mCh) 5、15、17和19上发现了多个奇数对数(LOD)分数>或= 4的数量性状位点(qtl)。在mCh 15和17上检测到与总肺活量(TLC), mCh 5和15上的死腔体积(VD)和肺适应性(C(L)), mCh 19上的C(L)以及mCh 15和17上的CO弥散量(D(CO))有显著联系。在不同的研究中,鉴定出的几个小鼠染色体区域与鉴定出与FEV1(用力呼气量-1秒)、FVC(用力肺活量)或FEV1/FVC相关的人类染色体区域是一致的。GANGULY等人(2007)最近利用表达QTL (e-QTL)策略的系统方法,对建议的候选基因进行外显子测序,然后预测蛋白质结构和性质,提出了小鼠肺功能的四个候选基因。它们是超氧化物歧化酶3,细胞外[SOD3];mCh 5: V(D)],三叶因子2 (TFF2);mh17: TLC和D(co),外核苷酸焦磷酸酶/磷酸二酯酶2 (ENPP2);mCh 15:TLC和C(L)),松弛素1 (RLN1;妇幼保健19;CL和CL/TLC)。作为功能验证的一部分,与菌株匹配的对照Sod3+/+小鼠相比,检测到基因靶向Sod3-/-小鼠的导气管体积(V(D)/TLC)增加,与mCh 5上的QTL一致。基因靶向小鼠的研究结果表明,SOD3是决定气道容积复杂特征的一个重要因素。作为翻译方法的一部分,这些基因的人类变异需要在肺部发育和肺部疾病的发展中进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Association studies of lung function in mice.

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and an accelerating decline of lung function is the earliest and a major indicator of the onset of COPD. Therefore it has become necessary to understand the genetic basis of this complex physiological trait in order to determine the potential susceptibility factors of this disease. REINHARD et al (2005) performed the genome wide linkage analysis study with inbred mice having extremely divergent lung function (C3H/HeJ versus JF1/Msf) and identified multiple Quantitative Trait Loci (QTLs) on mouse chromosomes (mCh) 5, 15, 17, and 19 with Logarithm of odd (LOD) scores > or = 4. Significant linkages to total lung capacity (TLC) were detected on mCh 15 and 17, to dead space volume (VD) and lung compliance (C(L)) on mCh 5 and 15, to C(L) on mCh 19, and to diffusing capacity for CO (D(co)) on mCh 15 and 17. Several of the mouse chromosomal regions identified were syntenic to human chromosomal regions identified with linkage to FEV1 (forced expiratory volume-1 second), FVC (forced vital capacity), or FEV1/FVC in separate studies. Using a systematic approach of expression QTL (e-QTL) strategy and exon-wise sequencing of suggested candidate genes followed by predicted protein structure and property, GANGULY et al (2007) recently proposed four candidate genes for lung function in mice. They are superoxide dismutase 3, extracellular [SOD3; mCh 5: V(D)], trefoil factor 2 (TFF2; mCh 17: TLC and D(co)), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; mCh 15:TLC and C(L)), and relaxin 1 (RLN1; mCh 19; CL and CL/TLC). As a part of functional validation, gene-targeted Sod3-/- mice were detected with increased conducting airway volume (V(D)/TLC) compared with strain-matched control Sod3+/+ mice, consistent with the QTL on mCh 5. Findings with gene-targeted mice suggested that SOD3 is a contributing factor defining the complex trait of conducting airway volume. The human variation in these genes needs further study both in lung development and in the development of lung disease as a part of translational approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment of septicaemia and severe bacterial infections in foals with a new cefquinome formulation: a field study. Expression of heat shock proteins in tissues from young pigs exposed to transport stress. [Mortality in free living siskins (Spinus spinus Linnaeus, 1758) due to Salmonella typhimurium, phage type DT104 and DT013]. A first case of ehrlichiosis in a horse in Poland. Immunohistological demonstration of Rhodococcus equi in a trotter foal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1