成像突触抑制整个大脑通过基因靶向Clomeleon。

Brain cell biology Pub Date : 2008-08-01 Epub Date: 2008-10-11 DOI:10.1007/s11068-008-9031-x
Ken Berglund, Wolfram Schleich, Hong Wang, Guoping Feng, William C Hall, Thomas Kuner, George J Augustine
{"title":"成像突触抑制整个大脑通过基因靶向Clomeleon。","authors":"Ken Berglund,&nbsp;Wolfram Schleich,&nbsp;Hong Wang,&nbsp;Guoping Feng,&nbsp;William C Hall,&nbsp;Thomas Kuner,&nbsp;George J Augustine","doi":"10.1007/s11068-008-9031-x","DOIUrl":null,"url":null,"abstract":"<p><p>Here we survey a molecular genetic approach for imaging synaptic inhibition. This approach is based on measuring intracellular chloride concentration ([Cl(-)](i)) with the fluorescent chloride indicator protein, Clomeleon. We first describe several different ways to express Clomeleon in selected populations of neurons in the mouse brain. These methods include targeted viral gene transfer, conditional expression controlled by Cre recombination, and transgenesis based on the neuron-specific promoter, thy1. Next, we evaluate the feasibility of using different lines of thy1::Clomeleon transgenic mice to image synaptic inhibition in several different brain regions: the hippocampus, the deep cerebellar nuclei (DCN), the basolateral nucleus of the amygdala, and the superior colliculus (SC). Activation of hippocampal interneurons caused [Cl(-)](i) to rise transiently in individual postsynaptic CA1 pyramidal neurons. [Cl(-)](i) increased linearly with the number of electrical stimuli in a train, with peak changes as large as 4 mM. These responses were largely mediated by GABA receptors because they were blocked by antagonists of GABA receptors, such as GABAzine and bicuculline. Similar responses to synaptic activity were observed in DCN neurons, amygdalar principal cells, and collicular premotor neurons. However, in contrast to the hippocampus, the responses in these three regions were largely insensitive to antagonists of inhibitory neurotransmitter receptors. This indicates that synaptic activity can also cause Cl(-) influx through alternate pathways that remain to be identified. We conclude that Clomeleon imaging permits non-invasive, spatiotemporally precise recordings of [Cl(-)](i) in a large variety of neurons, and provides new opportunities for imaging synaptic inhibition and other forms of neuronal chloride signaling.</p>","PeriodicalId":72445,"journal":{"name":"Brain cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-008-9031-x","citationCount":"59","resultStr":"{\"title\":\"Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon.\",\"authors\":\"Ken Berglund,&nbsp;Wolfram Schleich,&nbsp;Hong Wang,&nbsp;Guoping Feng,&nbsp;William C Hall,&nbsp;Thomas Kuner,&nbsp;George J Augustine\",\"doi\":\"10.1007/s11068-008-9031-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here we survey a molecular genetic approach for imaging synaptic inhibition. This approach is based on measuring intracellular chloride concentration ([Cl(-)](i)) with the fluorescent chloride indicator protein, Clomeleon. We first describe several different ways to express Clomeleon in selected populations of neurons in the mouse brain. These methods include targeted viral gene transfer, conditional expression controlled by Cre recombination, and transgenesis based on the neuron-specific promoter, thy1. Next, we evaluate the feasibility of using different lines of thy1::Clomeleon transgenic mice to image synaptic inhibition in several different brain regions: the hippocampus, the deep cerebellar nuclei (DCN), the basolateral nucleus of the amygdala, and the superior colliculus (SC). Activation of hippocampal interneurons caused [Cl(-)](i) to rise transiently in individual postsynaptic CA1 pyramidal neurons. [Cl(-)](i) increased linearly with the number of electrical stimuli in a train, with peak changes as large as 4 mM. These responses were largely mediated by GABA receptors because they were blocked by antagonists of GABA receptors, such as GABAzine and bicuculline. Similar responses to synaptic activity were observed in DCN neurons, amygdalar principal cells, and collicular premotor neurons. However, in contrast to the hippocampus, the responses in these three regions were largely insensitive to antagonists of inhibitory neurotransmitter receptors. This indicates that synaptic activity can also cause Cl(-) influx through alternate pathways that remain to be identified. We conclude that Clomeleon imaging permits non-invasive, spatiotemporally precise recordings of [Cl(-)](i) in a large variety of neurons, and provides new opportunities for imaging synaptic inhibition and other forms of neuronal chloride signaling.</p>\",\"PeriodicalId\":72445,\"journal\":{\"name\":\"Brain cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11068-008-9031-x\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain cell biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11068-008-9031-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2008/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-008-9031-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/10/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

在这里,我们研究了一种分子遗传学方法来成像突触抑制。这种方法是基于用荧光氯化物指示蛋白Clomeleon测量细胞内氯化物浓度([Cl(-)](i))。我们首先描述了几种不同的方式来表达Clomeleon在小鼠大脑中选定的神经元群体。这些方法包括靶向病毒基因转移,由Cre重组控制的条件表达,以及基于神经元特异性启动子thy1的转基因。接下来,我们评估了使用不同种类的thy1::Clomeleon转基因小鼠在几个不同的大脑区域(海马、小脑深部核(DCN)、杏仁核基底外侧核和上丘(SC))成像突触抑制的可行性。海马中间神经元的激活导致单个突触后CA1锥体神经元中的[Cl(-)](i)瞬间升高。[Cl(-)](i)随着电刺激次数的增加而线性增加,峰值变化可达4 mM。这些反应主要由GABA受体介导,因为它们被GABA受体拮抗剂(如GABAzine和bicuculline)阻断。在DCN神经元、杏仁核主细胞和丘前运动神经元中也观察到类似的突触活性反应。然而,与海马体相反,这三个区域的反应对抑制性神经递质受体拮抗剂不敏感。这表明突触活动也可以通过其他途径引起Cl(-)内流,这些途径仍有待确定。我们得出的结论是,Clomeleon成像允许非侵入性,时空精确记录多种神经元中的[Cl(-)](i),并为成像突触抑制和其他形式的神经元氯信号提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon.

Here we survey a molecular genetic approach for imaging synaptic inhibition. This approach is based on measuring intracellular chloride concentration ([Cl(-)](i)) with the fluorescent chloride indicator protein, Clomeleon. We first describe several different ways to express Clomeleon in selected populations of neurons in the mouse brain. These methods include targeted viral gene transfer, conditional expression controlled by Cre recombination, and transgenesis based on the neuron-specific promoter, thy1. Next, we evaluate the feasibility of using different lines of thy1::Clomeleon transgenic mice to image synaptic inhibition in several different brain regions: the hippocampus, the deep cerebellar nuclei (DCN), the basolateral nucleus of the amygdala, and the superior colliculus (SC). Activation of hippocampal interneurons caused [Cl(-)](i) to rise transiently in individual postsynaptic CA1 pyramidal neurons. [Cl(-)](i) increased linearly with the number of electrical stimuli in a train, with peak changes as large as 4 mM. These responses were largely mediated by GABA receptors because they were blocked by antagonists of GABA receptors, such as GABAzine and bicuculline. Similar responses to synaptic activity were observed in DCN neurons, amygdalar principal cells, and collicular premotor neurons. However, in contrast to the hippocampus, the responses in these three regions were largely insensitive to antagonists of inhibitory neurotransmitter receptors. This indicates that synaptic activity can also cause Cl(-) influx through alternate pathways that remain to be identified. We conclude that Clomeleon imaging permits non-invasive, spatiotemporally precise recordings of [Cl(-)](i) in a large variety of neurons, and provides new opportunities for imaging synaptic inhibition and other forms of neuronal chloride signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Hello, goodbye. Imaging activity of neuronal populations with new long-wavelength voltage-sensitive dyes. Differences in c-jun and nNOS expression levels in motoneurons following different kinds of axonal injury in adult rats. Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1 O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1