{"title":"会议报告。","authors":"","doi":"10.1155/S1463924697000084","DOIUrl":null,"url":null,"abstract":"I In n s si il li ic co o m me ee et ts s i in n v vi iv vo o Technological developments have had a profound impact on biology during the past decade, spectacularly augmenting our ability to survey and interrogate biological phenomena. In particular, they have increased capacity for data generation by several orders of magnitude and made computation a necessary partner of biology. The sixth meeting in the biennial series of bioinformatics conferences co-sponsored by Georgia Institute of Technology in Atlanta and the Oak Ridge National Laboratory addressed the challenges that this technology-driven avalanche of data pose to bioinformatics-increasing the complexity of long-standing problems and creating new ones. G Ge en no om me e a al li ig gn nm me en nt t a an nd d g ge en ne e p pr re ed di ic ct ti io on n Sequence alignment is unquestionably one of the 'founding problems' in bioinformatics. The availability of sequenced genomes of many species has highlighted the need for methods of making reliable multiple alignments of whole genomes. The alignment of entire genome sequences is much harder to achieve than the alignment of amino-acid sequences of individual proteins, because of the much longer sequences involved (ranging from megabases to tens of megabases), complex evolutionary relationships among the genomes (such as duplications, deletions and translocations) and heterogeneous mutation rates along the sequence. Different methods often produce discrepant alignments with the same set of genomic sequences, and Martin Tompa has attempted to navigate through this complexity. Instead of proposing yet another method for multiple sequence alignment, he presented an approach to evaluating the quality of a given multiple alignment. This is a seemingly more modest goal; he was, however, able to identify high-quality and reliable regions in the multiple alignment, which is very important because downstream comparative genome analysis is compromised by incorrect alignments. Tompa presented data showing that about 10% of the positions in multiple alignments of the human genome with other vertebrate genomes-a widely used technique in comparative genomic studies-are likely to be incorrect. Gene prediction in genomic sequences presents similar problems. Current methods for predicting the exonic structures of protein-coding genes from genomic sequences are generally based on computational models that capture our understanding of the way proteins are encoded in genomes. However, recent surveys of the transcriptional activity of the human genome, …","PeriodicalId":22600,"journal":{"name":"The Journal of Automatic Chemistry","volume":"19 2","pages":"51-4"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/S1463924697000084","citationCount":"0","resultStr":"{\"title\":\"Meeting report.\",\"authors\":\"\",\"doi\":\"10.1155/S1463924697000084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I In n s si il li ic co o m me ee et ts s i in n v vi iv vo o Technological developments have had a profound impact on biology during the past decade, spectacularly augmenting our ability to survey and interrogate biological phenomena. In particular, they have increased capacity for data generation by several orders of magnitude and made computation a necessary partner of biology. The sixth meeting in the biennial series of bioinformatics conferences co-sponsored by Georgia Institute of Technology in Atlanta and the Oak Ridge National Laboratory addressed the challenges that this technology-driven avalanche of data pose to bioinformatics-increasing the complexity of long-standing problems and creating new ones. G Ge en no om me e a al li ig gn nm me en nt t a an nd d g ge en ne e p pr re ed di ic ct ti io on n Sequence alignment is unquestionably one of the 'founding problems' in bioinformatics. The availability of sequenced genomes of many species has highlighted the need for methods of making reliable multiple alignments of whole genomes. The alignment of entire genome sequences is much harder to achieve than the alignment of amino-acid sequences of individual proteins, because of the much longer sequences involved (ranging from megabases to tens of megabases), complex evolutionary relationships among the genomes (such as duplications, deletions and translocations) and heterogeneous mutation rates along the sequence. Different methods often produce discrepant alignments with the same set of genomic sequences, and Martin Tompa has attempted to navigate through this complexity. Instead of proposing yet another method for multiple sequence alignment, he presented an approach to evaluating the quality of a given multiple alignment. This is a seemingly more modest goal; he was, however, able to identify high-quality and reliable regions in the multiple alignment, which is very important because downstream comparative genome analysis is compromised by incorrect alignments. Tompa presented data showing that about 10% of the positions in multiple alignments of the human genome with other vertebrate genomes-a widely used technique in comparative genomic studies-are likely to be incorrect. Gene prediction in genomic sequences presents similar problems. Current methods for predicting the exonic structures of protein-coding genes from genomic sequences are generally based on computational models that capture our understanding of the way proteins are encoded in genomes. However, recent surveys of the transcriptional activity of the human genome, …\",\"PeriodicalId\":22600,\"journal\":{\"name\":\"The Journal of Automatic Chemistry\",\"volume\":\"19 2\",\"pages\":\"51-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/S1463924697000084\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Automatic Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/S1463924697000084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Automatic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S1463924697000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meeting report.
I In n s si il li ic co o m me ee et ts s i in n v vi iv vo o Technological developments have had a profound impact on biology during the past decade, spectacularly augmenting our ability to survey and interrogate biological phenomena. In particular, they have increased capacity for data generation by several orders of magnitude and made computation a necessary partner of biology. The sixth meeting in the biennial series of bioinformatics conferences co-sponsored by Georgia Institute of Technology in Atlanta and the Oak Ridge National Laboratory addressed the challenges that this technology-driven avalanche of data pose to bioinformatics-increasing the complexity of long-standing problems and creating new ones. G Ge en no om me e a al li ig gn nm me en nt t a an nd d g ge en ne e p pr re ed di ic ct ti io on n Sequence alignment is unquestionably one of the 'founding problems' in bioinformatics. The availability of sequenced genomes of many species has highlighted the need for methods of making reliable multiple alignments of whole genomes. The alignment of entire genome sequences is much harder to achieve than the alignment of amino-acid sequences of individual proteins, because of the much longer sequences involved (ranging from megabases to tens of megabases), complex evolutionary relationships among the genomes (such as duplications, deletions and translocations) and heterogeneous mutation rates along the sequence. Different methods often produce discrepant alignments with the same set of genomic sequences, and Martin Tompa has attempted to navigate through this complexity. Instead of proposing yet another method for multiple sequence alignment, he presented an approach to evaluating the quality of a given multiple alignment. This is a seemingly more modest goal; he was, however, able to identify high-quality and reliable regions in the multiple alignment, which is very important because downstream comparative genome analysis is compromised by incorrect alignments. Tompa presented data showing that about 10% of the positions in multiple alignments of the human genome with other vertebrate genomes-a widely used technique in comparative genomic studies-are likely to be incorrect. Gene prediction in genomic sequences presents similar problems. Current methods for predicting the exonic structures of protein-coding genes from genomic sequences are generally based on computational models that capture our understanding of the way proteins are encoded in genomes. However, recent surveys of the transcriptional activity of the human genome, …
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
product news From the editor's desk Product news Product News Meeting Reports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1