{"title":"臭氧诱导豚鼠鼻腔对快激肽的高反应性。","authors":"Ching-Yin Ho, Ching-Ting Tan, Hung-Huey Tsai, Yu Ru Kou","doi":"10.2500/ajr.2008.22.3208","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess role of hydroxyl radials in the ozone-induced upper airway hyper-responsiveness to tachykinins.</p><p><strong>Methods: </strong>A prospective, controlled, animal model (n = 96) was performed. Half of them exposed to air (A-group, placebo) and the other half exposed to 3 ppm ozone (O-group) for 2 h. Two hours post air/ozone exposure, animals were anesthetized and equally randomized to be pretreated with one of the three treatments, including saline vehicle, dimethylthiourea (DMTU; 500 mg/kg m, a hydroxyl radical scavenger), or phosphoramidon (Phos; 2 mg/kg, an inhibitor for neutral endopeptidase). Ten minutes after pretreatment, half of the animals in each group were i.v. injected with capsaicin (2 microg/kg), and the other half were i.v. injected with substance P (10 microg/kg) to produce Evans blue dye extravasation.</p><p><strong>Results: </strong>Nasal exudative response to capsaicin or substance P in O-group was found to be significantly greater than that in A-group. This ozone-induced nasal airway hyperresponsiveness was largely prevented by DMTU. Phosphoramidon produced a similar nasal airway hyperresponsiveness in the A-group, but failed to alter ozone-induced nasal airway hyperresponsiveness in O-group. In sharp contrast, only substance P, but not capsaicin, produced a laryngeal exudative response in the A-group, which was similar to that in the O-group. The laryngeal exudative response to substance P was not significantly affected by DMTU or Phos.</p><p><strong>Conclusion: </strong>In the guinea-pig model, hydroxyl radicals play a vital role in the development of ozone-induced nasal airway hyperresponsiveness to tachykinins. It is possibly mediated through the suppressive action of ozone on the tachykinin degradation.</p>","PeriodicalId":72175,"journal":{"name":"American journal of rhinology","volume":"22 5","pages":"463-7"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2500/ajr.2008.22.3208","citationCount":"40","resultStr":"{\"title\":\"Ozone-induced nasal hyperresponsiveness to tachykinins in guinea pigs.\",\"authors\":\"Ching-Yin Ho, Ching-Ting Tan, Hung-Huey Tsai, Yu Ru Kou\",\"doi\":\"10.2500/ajr.2008.22.3208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To assess role of hydroxyl radials in the ozone-induced upper airway hyper-responsiveness to tachykinins.</p><p><strong>Methods: </strong>A prospective, controlled, animal model (n = 96) was performed. Half of them exposed to air (A-group, placebo) and the other half exposed to 3 ppm ozone (O-group) for 2 h. Two hours post air/ozone exposure, animals were anesthetized and equally randomized to be pretreated with one of the three treatments, including saline vehicle, dimethylthiourea (DMTU; 500 mg/kg m, a hydroxyl radical scavenger), or phosphoramidon (Phos; 2 mg/kg, an inhibitor for neutral endopeptidase). Ten minutes after pretreatment, half of the animals in each group were i.v. injected with capsaicin (2 microg/kg), and the other half were i.v. injected with substance P (10 microg/kg) to produce Evans blue dye extravasation.</p><p><strong>Results: </strong>Nasal exudative response to capsaicin or substance P in O-group was found to be significantly greater than that in A-group. This ozone-induced nasal airway hyperresponsiveness was largely prevented by DMTU. Phosphoramidon produced a similar nasal airway hyperresponsiveness in the A-group, but failed to alter ozone-induced nasal airway hyperresponsiveness in O-group. In sharp contrast, only substance P, but not capsaicin, produced a laryngeal exudative response in the A-group, which was similar to that in the O-group. The laryngeal exudative response to substance P was not significantly affected by DMTU or Phos.</p><p><strong>Conclusion: </strong>In the guinea-pig model, hydroxyl radicals play a vital role in the development of ozone-induced nasal airway hyperresponsiveness to tachykinins. It is possibly mediated through the suppressive action of ozone on the tachykinin degradation.</p>\",\"PeriodicalId\":72175,\"journal\":{\"name\":\"American journal of rhinology\",\"volume\":\"22 5\",\"pages\":\"463-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2500/ajr.2008.22.3208\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of rhinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2500/ajr.2008.22.3208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of rhinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2500/ajr.2008.22.3208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ozone-induced nasal hyperresponsiveness to tachykinins in guinea pigs.
Objective: To assess role of hydroxyl radials in the ozone-induced upper airway hyper-responsiveness to tachykinins.
Methods: A prospective, controlled, animal model (n = 96) was performed. Half of them exposed to air (A-group, placebo) and the other half exposed to 3 ppm ozone (O-group) for 2 h. Two hours post air/ozone exposure, animals were anesthetized and equally randomized to be pretreated with one of the three treatments, including saline vehicle, dimethylthiourea (DMTU; 500 mg/kg m, a hydroxyl radical scavenger), or phosphoramidon (Phos; 2 mg/kg, an inhibitor for neutral endopeptidase). Ten minutes after pretreatment, half of the animals in each group were i.v. injected with capsaicin (2 microg/kg), and the other half were i.v. injected with substance P (10 microg/kg) to produce Evans blue dye extravasation.
Results: Nasal exudative response to capsaicin or substance P in O-group was found to be significantly greater than that in A-group. This ozone-induced nasal airway hyperresponsiveness was largely prevented by DMTU. Phosphoramidon produced a similar nasal airway hyperresponsiveness in the A-group, but failed to alter ozone-induced nasal airway hyperresponsiveness in O-group. In sharp contrast, only substance P, but not capsaicin, produced a laryngeal exudative response in the A-group, which was similar to that in the O-group. The laryngeal exudative response to substance P was not significantly affected by DMTU or Phos.
Conclusion: In the guinea-pig model, hydroxyl radicals play a vital role in the development of ozone-induced nasal airway hyperresponsiveness to tachykinins. It is possibly mediated through the suppressive action of ozone on the tachykinin degradation.