微生物合成天然产物和生物燃料的趋势。

Joseph A Chemier, Zachary L Fowler, Mattheos A G Koffas, Effendi Leonard
{"title":"微生物合成天然产物和生物燃料的趋势。","authors":"Joseph A Chemier,&nbsp;Zachary L Fowler,&nbsp;Mattheos A G Koffas,&nbsp;Effendi Leonard","doi":"10.1002/9780470392881.ch4","DOIUrl":null,"url":null,"abstract":"<p><p>Ever since the era of recombinant DNA technology for natural product biosynthesis emerged (292), microorganisms are increasingly becoming common production platforms for many fine chemicals, including natural products and biofuels, that are currently being produced either through chemical methods or using plant and organ cell cultures. The rapid elucidation of biosynthetic pathways made possible through advanced genomic tools has made natural products again the molecules of choice for drug development. Indeed, half of the drugs currently in clinical use are natural products and it is expected that the market size of biotechnology-derived small molecules will exceed billion U.S.$100 in 2010 and billion U.S.$400 in 2030 (3, 293). There are still many challenges facing the use of microorganisms for high-value chemical synthesis. For example, further developments of recent advances are necessary to make a fermentation-based biobutanol industry that can compete effectively with petrochemically derived butanol. As such, we believe that biocatalyst factories such as E. coli and S. cerevisiae will not only continue to be highly attractive alternatives to traditional chemical manufacturing but the application of powerful systems biology approaches will facilitate their expanded role in industrial applications (294-296).</p>","PeriodicalId":50865,"journal":{"name":"Advances in Enzymology and Related Subjects","volume":"76 ","pages":"151-217"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Trends in microbial synthesis of natural products and biofuels.\",\"authors\":\"Joseph A Chemier,&nbsp;Zachary L Fowler,&nbsp;Mattheos A G Koffas,&nbsp;Effendi Leonard\",\"doi\":\"10.1002/9780470392881.ch4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ever since the era of recombinant DNA technology for natural product biosynthesis emerged (292), microorganisms are increasingly becoming common production platforms for many fine chemicals, including natural products and biofuels, that are currently being produced either through chemical methods or using plant and organ cell cultures. The rapid elucidation of biosynthetic pathways made possible through advanced genomic tools has made natural products again the molecules of choice for drug development. Indeed, half of the drugs currently in clinical use are natural products and it is expected that the market size of biotechnology-derived small molecules will exceed billion U.S.$100 in 2010 and billion U.S.$400 in 2030 (3, 293). There are still many challenges facing the use of microorganisms for high-value chemical synthesis. For example, further developments of recent advances are necessary to make a fermentation-based biobutanol industry that can compete effectively with petrochemically derived butanol. As such, we believe that biocatalyst factories such as E. coli and S. cerevisiae will not only continue to be highly attractive alternatives to traditional chemical manufacturing but the application of powerful systems biology approaches will facilitate their expanded role in industrial applications (294-296).</p>\",\"PeriodicalId\":50865,\"journal\":{\"name\":\"Advances in Enzymology and Related Subjects\",\"volume\":\"76 \",\"pages\":\"151-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Enzymology and Related Subjects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9780470392881.ch4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Enzymology and Related Subjects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9780470392881.ch4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

自用于天然产物生物合成的重组DNA技术时代出现以来(292),微生物正日益成为许多精细化学品(包括天然产物和生物燃料)的常见生产平台,这些化学品目前要么通过化学方法生产,要么使用植物和器官细胞培养。通过先进的基因组工具,生物合成途径的快速阐明成为可能,这使得天然产物再次成为药物开发的分子选择。事实上,目前临床使用的药物中有一半是天然产物,预计生物技术衍生小分子的市场规模将在2010年超过100亿美元,在2030年超过400亿美元(3,293)。利用微生物进行高价值化学合成仍面临许多挑战。例如,有必要进一步发展以发酵为基础的生物丁醇工业,以有效地与石化衍生丁醇竞争。因此,我们相信,像大肠杆菌和酿酒杆菌这样的生物催化剂工厂不仅将继续成为传统化学制造的极具吸引力的替代品,而且强大的系统生物学方法的应用将促进它们在工业应用中的扩大作用(294-296)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in microbial synthesis of natural products and biofuels.

Ever since the era of recombinant DNA technology for natural product biosynthesis emerged (292), microorganisms are increasingly becoming common production platforms for many fine chemicals, including natural products and biofuels, that are currently being produced either through chemical methods or using plant and organ cell cultures. The rapid elucidation of biosynthetic pathways made possible through advanced genomic tools has made natural products again the molecules of choice for drug development. Indeed, half of the drugs currently in clinical use are natural products and it is expected that the market size of biotechnology-derived small molecules will exceed billion U.S.$100 in 2010 and billion U.S.$400 in 2030 (3, 293). There are still many challenges facing the use of microorganisms for high-value chemical synthesis. For example, further developments of recent advances are necessary to make a fermentation-based biobutanol industry that can compete effectively with petrochemically derived butanol. As such, we believe that biocatalyst factories such as E. coli and S. cerevisiae will not only continue to be highly attractive alternatives to traditional chemical manufacturing but the application of powerful systems biology approaches will facilitate their expanded role in industrial applications (294-296).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Succinate dehydrogenase. Bacterial infection remains a leading cause of death in both Western and developing world. Preface. Efflux pumps of gram-negative bacteria: genetic responses to stress and the modulation of their activity by pH, inhibitors, and phenothiazines. Structure and mechanism of RND-type multidrug efflux pumps. The MFS efflux proteins of gram-positive and gram-negative bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1