兔上颌窦体内激光组织焊接。

Benjamin S Bleier, James N Palmer, Michael A Gratton, Noam A Cohen
{"title":"兔上颌窦体内激光组织焊接。","authors":"Benjamin S Bleier,&nbsp;James N Palmer,&nbsp;Michael A Gratton,&nbsp;Noam A Cohen","doi":"10.2500/ajr.2008.22.3244","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>One of the challenges in the current expansion of endoscopic sinonasal surgery is the ability to adequately reconstruct the skull base. Laser tissue welding (LTW) uses laser energy coupled to a biological solder to produce tissue bonds with burst thresholds exceeding human intracranial pressure. This technology could be used to reduce the rate of postoperative cerebrospinal fluid (CSF) leak. We performed this study to determine whether LTW can create durable tissue bonds in sinonasal mucosa that support normal wound healing and produce minimal collateral thermal injury.</p><p><strong>Methods: </strong>Bilateral maxillary sinus mucosal incisions were made in 20 New Zealand white rabbits and one side was repaired using LTW. Burst pressure thresholds were measured on postoperative days 0, 5, and 15 and were compared with control using a two- way ANOVA and a post hoc Tukey test. Welds were examined histologically for thermal injury, inflammation, and fibroplasia and graded on a 4-point scale by three blinded observers.</p><p><strong>Results: </strong>The burst pressures of the LTW group were significantly higher than control on postoperative day 0 (120.85 mm Hg, N = 4, SD = 47.84 versus 7.85 mm Hg, N = 4, SD = 0.78), and day 5 (132.56 mm Hg, N = 8, SD = 24.02 versus 41.7 mm Hg, N = 8, SD = 7.2; p < 0.05). By postoperative day 15 there was no significant difference between LTW (169.64 mm Hg, N = 8, SD = 18.49) and control (160.84 mm Hg, N = 8, SD = 14.16) burst thresholds. There was no evidence of thermal injury to the surrounding tissue in any group as well as no difference between experimental group and control with respect to inflammation or fibroplasia.</p><p><strong>Conclusion: </strong>This is the first in vivo study showing that LTW is capable of producing tissue bonds exceeding human intracranial pressure with negligible thermal injury in sinonasal tissue. Welding can be performed endoscopically using a fiberoptic cable and may be useful in CSF leak and skull base repair.</p>","PeriodicalId":72175,"journal":{"name":"American journal of rhinology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2500/ajr.2008.22.3244","citationCount":"15","resultStr":"{\"title\":\"In vivo laser tissue welding in the rabbit maxillary sinus.\",\"authors\":\"Benjamin S Bleier,&nbsp;James N Palmer,&nbsp;Michael A Gratton,&nbsp;Noam A Cohen\",\"doi\":\"10.2500/ajr.2008.22.3244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>One of the challenges in the current expansion of endoscopic sinonasal surgery is the ability to adequately reconstruct the skull base. Laser tissue welding (LTW) uses laser energy coupled to a biological solder to produce tissue bonds with burst thresholds exceeding human intracranial pressure. This technology could be used to reduce the rate of postoperative cerebrospinal fluid (CSF) leak. We performed this study to determine whether LTW can create durable tissue bonds in sinonasal mucosa that support normal wound healing and produce minimal collateral thermal injury.</p><p><strong>Methods: </strong>Bilateral maxillary sinus mucosal incisions were made in 20 New Zealand white rabbits and one side was repaired using LTW. Burst pressure thresholds were measured on postoperative days 0, 5, and 15 and were compared with control using a two- way ANOVA and a post hoc Tukey test. Welds were examined histologically for thermal injury, inflammation, and fibroplasia and graded on a 4-point scale by three blinded observers.</p><p><strong>Results: </strong>The burst pressures of the LTW group were significantly higher than control on postoperative day 0 (120.85 mm Hg, N = 4, SD = 47.84 versus 7.85 mm Hg, N = 4, SD = 0.78), and day 5 (132.56 mm Hg, N = 8, SD = 24.02 versus 41.7 mm Hg, N = 8, SD = 7.2; p < 0.05). By postoperative day 15 there was no significant difference between LTW (169.64 mm Hg, N = 8, SD = 18.49) and control (160.84 mm Hg, N = 8, SD = 14.16) burst thresholds. There was no evidence of thermal injury to the surrounding tissue in any group as well as no difference between experimental group and control with respect to inflammation or fibroplasia.</p><p><strong>Conclusion: </strong>This is the first in vivo study showing that LTW is capable of producing tissue bonds exceeding human intracranial pressure with negligible thermal injury in sinonasal tissue. Welding can be performed endoscopically using a fiberoptic cable and may be useful in CSF leak and skull base repair.</p>\",\"PeriodicalId\":72175,\"journal\":{\"name\":\"American journal of rhinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2500/ajr.2008.22.3244\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of rhinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2500/ajr.2008.22.3244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of rhinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2500/ajr.2008.22.3244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

背景:当前扩大鼻内镜手术的挑战之一是能否充分重建颅底。激光组织焊接(LTW)利用激光能量与生物焊料耦合产生的组织键的破裂阈值超过人体颅内压。该技术可降低术后脑脊液(CSF)漏出率。我们进行了这项研究,以确定LTW是否可以在鼻黏膜中建立持久的组织结合,以支持正常伤口愈合并产生最小的侧支热损伤。方法:20只新西兰大白兔双侧上颌窦粘膜切口,一侧采用LTW修复。在术后第0、5和15天测量破裂压力阈值,并采用双因素方差分析和事后Tukey检验与对照组进行比较。对焊缝进行热损伤、炎症和纤维增生的组织学检查,并由三名盲法观察者按4分制进行评分。结果:LTW组在术后第0天(120.85 mm Hg, N = 4, SD = 47.84 vs . 7.85 mm Hg, N = 4, SD = 0.78)和第5天(132.56 mm Hg, N = 8, SD = 24.02 vs . 41.7 mm Hg, N = 8, SD = 7.2)破裂压力均显著高于对照组;P < 0.05)。术后第15天,LTW组(169.64 mm Hg, N = 8, SD = 18.49)与对照组(160.84 mm Hg, N = 8, SD = 14.16)爆发阈值无显著差异。各组周围组织均无热损伤,实验组与对照组在炎症或纤维增生方面无差异。结论:这是首次在体内研究表明,LTW能够在鼻窦组织中产生超过人颅内压的组织键,而热损伤可以忽略不计。焊接可在内窥镜下使用光纤电缆进行,并可用于脑脊液泄漏和颅底修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vivo laser tissue welding in the rabbit maxillary sinus.

Background: One of the challenges in the current expansion of endoscopic sinonasal surgery is the ability to adequately reconstruct the skull base. Laser tissue welding (LTW) uses laser energy coupled to a biological solder to produce tissue bonds with burst thresholds exceeding human intracranial pressure. This technology could be used to reduce the rate of postoperative cerebrospinal fluid (CSF) leak. We performed this study to determine whether LTW can create durable tissue bonds in sinonasal mucosa that support normal wound healing and produce minimal collateral thermal injury.

Methods: Bilateral maxillary sinus mucosal incisions were made in 20 New Zealand white rabbits and one side was repaired using LTW. Burst pressure thresholds were measured on postoperative days 0, 5, and 15 and were compared with control using a two- way ANOVA and a post hoc Tukey test. Welds were examined histologically for thermal injury, inflammation, and fibroplasia and graded on a 4-point scale by three blinded observers.

Results: The burst pressures of the LTW group were significantly higher than control on postoperative day 0 (120.85 mm Hg, N = 4, SD = 47.84 versus 7.85 mm Hg, N = 4, SD = 0.78), and day 5 (132.56 mm Hg, N = 8, SD = 24.02 versus 41.7 mm Hg, N = 8, SD = 7.2; p < 0.05). By postoperative day 15 there was no significant difference between LTW (169.64 mm Hg, N = 8, SD = 18.49) and control (160.84 mm Hg, N = 8, SD = 14.16) burst thresholds. There was no evidence of thermal injury to the surrounding tissue in any group as well as no difference between experimental group and control with respect to inflammation or fibroplasia.

Conclusion: This is the first in vivo study showing that LTW is capable of producing tissue bonds exceeding human intracranial pressure with negligible thermal injury in sinonasal tissue. Welding can be performed endoscopically using a fiberoptic cable and may be useful in CSF leak and skull base repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis. Comparison of laryngeal mask with endotracheal tube for anesthesia in endoscopic sinus surgery. The effect of nasal surgery on snoring. Results of endoscopic maxillary mega-antrostomy in recalcitrant maxillary sinusitis. The efficacy of topical antibiofilm agents in a sheep model of rhinosinusitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1