流行病学暴露研究中评估暴露-反应关系的趋势测试。

Ludwig A Hothorn, Michael Vaeth, Torsten Hothorn
{"title":"流行病学暴露研究中评估暴露-反应关系的趋势测试。","authors":"Ludwig A Hothorn,&nbsp;Michael Vaeth,&nbsp;Torsten Hothorn","doi":"10.1186/1742-5573-6-1","DOIUrl":null,"url":null,"abstract":"<p><p>One possibility for the statistical evaluation of trends in epidemiological exposure studies is the use of a trend test for data organized in a 2 x k contingency table. Commonly, the exposure data are naturally grouped or continuous exposure data are appropriately categorized. The trend test should be sensitive to any shape of the exposure-response relationship. Commonly, a global trend test only determines whether there is a trend or not. Once a trend is seen it is important to identify the likely shape of the exposure-response relationship. This paper introduces a best contrast approach and an alternative approach based on order-restricted information criteria for the model selection of a particular exposure-response relationship. For the simple change point alternative H1 : pi1 = ...= piq <piq+1 = ... = pik an appropriate approach for the identification of a global trend as well as for the most likely shape of that exposure-response relationship is characterized by simulation and demonstrated for real data examples. Power and simultaneous confidence intervals can be estimated as well. If the conditions are fulfilled to transform the exposure-response data into a 2 x k table, a simple approach for identification of a global trend and its elementary shape is available for epidemiologists.</p>","PeriodicalId":87082,"journal":{"name":"Epidemiologic perspectives & innovations : EP+I","volume":"6 ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-5573-6-1","citationCount":"16","resultStr":"{\"title\":\"Trend tests for the evaluation of exposure-response relationships in epidemiological exposure studies.\",\"authors\":\"Ludwig A Hothorn,&nbsp;Michael Vaeth,&nbsp;Torsten Hothorn\",\"doi\":\"10.1186/1742-5573-6-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One possibility for the statistical evaluation of trends in epidemiological exposure studies is the use of a trend test for data organized in a 2 x k contingency table. Commonly, the exposure data are naturally grouped or continuous exposure data are appropriately categorized. The trend test should be sensitive to any shape of the exposure-response relationship. Commonly, a global trend test only determines whether there is a trend or not. Once a trend is seen it is important to identify the likely shape of the exposure-response relationship. This paper introduces a best contrast approach and an alternative approach based on order-restricted information criteria for the model selection of a particular exposure-response relationship. For the simple change point alternative H1 : pi1 = ...= piq <piq+1 = ... = pik an appropriate approach for the identification of a global trend as well as for the most likely shape of that exposure-response relationship is characterized by simulation and demonstrated for real data examples. Power and simultaneous confidence intervals can be estimated as well. If the conditions are fulfilled to transform the exposure-response data into a 2 x k table, a simple approach for identification of a global trend and its elementary shape is available for epidemiologists.</p>\",\"PeriodicalId\":87082,\"journal\":{\"name\":\"Epidemiologic perspectives & innovations : EP+I\",\"volume\":\"6 \",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1742-5573-6-1\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic perspectives & innovations : EP+I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-5573-6-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic perspectives & innovations : EP+I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-5573-6-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

对流行病学暴露研究趋势进行统计评估的一种可能性是对2×k列联表中组织的数据使用趋势检验。通常,曝光数据被自然地分组,或者连续曝光数据被适当地分类。趋势测试应对任何形式的暴露-反应关系敏感。通常,全球趋势测试只确定是否存在趋势。一旦看到趋势,就必须确定暴露-反应关系的可能形状。本文介绍了一种基于顺序限制信息准则的最佳对比度方法和一种替代方法,用于特定暴露-反应关系的模型选择。对于简单变化点备选方案H1:pi1=…=piq
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trend tests for the evaluation of exposure-response relationships in epidemiological exposure studies.

One possibility for the statistical evaluation of trends in epidemiological exposure studies is the use of a trend test for data organized in a 2 x k contingency table. Commonly, the exposure data are naturally grouped or continuous exposure data are appropriately categorized. The trend test should be sensitive to any shape of the exposure-response relationship. Commonly, a global trend test only determines whether there is a trend or not. Once a trend is seen it is important to identify the likely shape of the exposure-response relationship. This paper introduces a best contrast approach and an alternative approach based on order-restricted information criteria for the model selection of a particular exposure-response relationship. For the simple change point alternative H1 : pi1 = ...= piq

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA). Use of the integrated health interview series: trends in medical provider utilization (1972-2008). Social network analysis and agent-based modeling in social epidemiology. The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects. Attributing the burden of cancer at work: three areas of concern when examining the example of shift-work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1