利用多阶段致癌模型研究辐射荷尔蒙作用机制。

H Schöllnberger, R D Stewart, R E J Mitchel, W Hofmann
{"title":"利用多阶段致癌模型研究辐射荷尔蒙作用机制。","authors":"H Schöllnberger, R D Stewart, R E J Mitchel, W Hofmann","doi":"10.1080/15401420490900263","DOIUrl":null,"url":null,"abstract":"<p><p>A multistage cancer model that describes the putative rate-limiting steps in carcinogenesis is developed and used to investigate the potential impact on cumulative lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In the model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired or unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model explicitly accounts for cell birth and death processes, the clonal expansion of initiated cells, malignant conversion, and a lag period for tumor formation. Radioprotective mechanisms are incorporated into the model by postulating dose and dose-rate-dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. As currently formulated, the model is most applicable to low-linear-energy-transfer (LET) radiation delivered at low dose rates. Sensitivity studies are conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose-rate-dependent cellular defense mechanisms are incorporated into a multistage cancer model. For lung cancer, both linear no-threshold (LNT-), and non-LNT-shaped responses can be obtained. If experiments demonstrate that the effects of DNA damage repair and radical scavenging are enhanced at least three-fold under low-dose conditions, our studies would support the existence of U-shaped responses. The overall fidelity of the DNA damage repair process may have a large impact on the cumulative incidence of lung cancer. The reported studies also highlight the need to know whether or not (or to what extent) multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years) for low-LET radiation.</p>","PeriodicalId":74315,"journal":{"name":"Nonlinearity in biology, toxicology, medicine","volume":"2 4","pages":"317-52"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657508/pdf/nbtm-2-4-0317.pdf","citationCount":"0","resultStr":"{\"title\":\"An examination of radiation hormesis mechanisms using a multistage carcinogenesis model.\",\"authors\":\"H Schöllnberger, R D Stewart, R E J Mitchel, W Hofmann\",\"doi\":\"10.1080/15401420490900263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A multistage cancer model that describes the putative rate-limiting steps in carcinogenesis is developed and used to investigate the potential impact on cumulative lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In the model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired or unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model explicitly accounts for cell birth and death processes, the clonal expansion of initiated cells, malignant conversion, and a lag period for tumor formation. Radioprotective mechanisms are incorporated into the model by postulating dose and dose-rate-dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. As currently formulated, the model is most applicable to low-linear-energy-transfer (LET) radiation delivered at low dose rates. Sensitivity studies are conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose-rate-dependent cellular defense mechanisms are incorporated into a multistage cancer model. For lung cancer, both linear no-threshold (LNT-), and non-LNT-shaped responses can be obtained. If experiments demonstrate that the effects of DNA damage repair and radical scavenging are enhanced at least three-fold under low-dose conditions, our studies would support the existence of U-shaped responses. The overall fidelity of the DNA damage repair process may have a large impact on the cumulative incidence of lung cancer. The reported studies also highlight the need to know whether or not (or to what extent) multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years) for low-LET radiation.</p>\",\"PeriodicalId\":74315,\"journal\":{\"name\":\"Nonlinearity in biology, toxicology, medicine\",\"volume\":\"2 4\",\"pages\":\"317-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657508/pdf/nbtm-2-4-0317.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinearity in biology, toxicology, medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15401420490900263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity in biology, toxicology, medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15401420490900263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了一个多阶段癌症模型,该模型描述了致癌过程中可能的限速步骤,并用于研究费嫩德根和波利科夫提出的激素发生机制对累积肺癌发病率的潜在影响。在该模型中,辐射和内源性过程会损伤肺部靶细胞的 DNA。部分错误修复或未修复的 DNA 损伤会诱发基因组不稳定性,最终导致恶性细胞的积累。该模型明确考虑了细胞的出生和死亡过程、启动细胞的克隆扩增、恶性转化以及肿瘤形成的滞后期。通过假设剂量和剂量率依赖性自由基清除,该模型纳入了辐射防护机制。DNA 损伤修复的准确性也取决于剂量和剂量率。按照目前的表述,该模型最适用于以低剂量率传递的低线性能量转移(LET)辐射。进行敏感性研究的目的是确定关键的模型输入,并帮助确定将剂量和剂量率依赖性细胞防御机制纳入多阶段癌症模型时可能出现的累积肺癌发病率曲线的形状。对于肺癌,可以得到线性无阈值(LNT-)和非 LNT 形的反应。如果实验证明,在低剂量条件下,DNA 损伤修复和自由基清除的效果至少增强了三倍,那么我们的研究将支持 U 型反应的存在。DNA 损伤修复过程的整体保真度可能对肺癌的累积发病率有很大影响。所报告的研究还强调,有必要了解内源性过程是否会形成(或在多大程度上形成)多重损伤的 DNA 位点。导致 U 型响应的模型输入与低辐射的有效累积肺癌发病阈值一致,该阈值可能高达 300 mGy(75 年中每年 4 mGy)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An examination of radiation hormesis mechanisms using a multistage carcinogenesis model.

A multistage cancer model that describes the putative rate-limiting steps in carcinogenesis is developed and used to investigate the potential impact on cumulative lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In the model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired or unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model explicitly accounts for cell birth and death processes, the clonal expansion of initiated cells, malignant conversion, and a lag period for tumor formation. Radioprotective mechanisms are incorporated into the model by postulating dose and dose-rate-dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. As currently formulated, the model is most applicable to low-linear-energy-transfer (LET) radiation delivered at low dose rates. Sensitivity studies are conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose-rate-dependent cellular defense mechanisms are incorporated into a multistage cancer model. For lung cancer, both linear no-threshold (LNT-), and non-LNT-shaped responses can be obtained. If experiments demonstrate that the effects of DNA damage repair and radical scavenging are enhanced at least three-fold under low-dose conditions, our studies would support the existence of U-shaped responses. The overall fidelity of the DNA damage repair process may have a large impact on the cumulative incidence of lung cancer. The reported studies also highlight the need to know whether or not (or to what extent) multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years) for low-LET radiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mathematical modelling of dose-response relationship (hormesis) in allelopathy and its application. Whole-range assessment: a simple method for analysing allelopathic dose-response data. Mathematical Modelling of Allelopathy: IV. Assessment of Contributions of Competition and Allelopathy to Interference by Barley. Modeling the effect of density-dependent chemical interference upon seed germination. Implementation of card: curve-fitting allelochemical response data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1