生物钟振荡的稳健性、耗散性和一致性:潜在景观和通量视角。

Jin Wang, Li Xu, Erkang Wang
{"title":"生物钟振荡的稳健性、耗散性和一致性:潜在景观和通量视角。","authors":"Jin Wang,&nbsp;Li Xu,&nbsp;Erkang Wang","doi":"10.1186/1757-5036-1-7","DOIUrl":null,"url":null,"abstract":"<p><p> Finding the global probabilistic nature of a non-equilibrium circadian clock is essential for addressing important issues of robustness and function. We have uncovered the underlying potential energy landscape of a simple cyanobacteria biochemical network, and the corresponding flux which is the driving force for the oscillation. We found that the underlying potential landscape for the oscillation in the presence of small statistical fluctuations is like an explicit ring valley or doughnut shape in the three dimensional protein concentration space. We found that the barrier height separating the oscillation ring and other area is a quantitative measure of the oscillation robustness and decreases when the fluctuations increase. We also found that the entropy production rate characterizing the dissipation or heat loss decreases as the fluctuations decrease. In addition, we found that, as the fluctuations increase, the period and the amplitude of the oscillations is more dispersed, and the phase coherence decreases. We also found that the properties from exploring the effects of the inherent chemical rate parameters on the robustness. Our approach is quite general and can be applied to other oscillatory cellular network.PACS Codes: 87.18.-h, 87.18.Vf, 87.18.Yt.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"1 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-1-7","citationCount":"14","resultStr":"{\"title\":\"Robustness, dissipations and coherence of the oscillation of circadian clock: potential landscape and flux perspectives.\",\"authors\":\"Jin Wang,&nbsp;Li Xu,&nbsp;Erkang Wang\",\"doi\":\"10.1186/1757-5036-1-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Finding the global probabilistic nature of a non-equilibrium circadian clock is essential for addressing important issues of robustness and function. We have uncovered the underlying potential energy landscape of a simple cyanobacteria biochemical network, and the corresponding flux which is the driving force for the oscillation. We found that the underlying potential landscape for the oscillation in the presence of small statistical fluctuations is like an explicit ring valley or doughnut shape in the three dimensional protein concentration space. We found that the barrier height separating the oscillation ring and other area is a quantitative measure of the oscillation robustness and decreases when the fluctuations increase. We also found that the entropy production rate characterizing the dissipation or heat loss decreases as the fluctuations decrease. In addition, we found that, as the fluctuations increase, the period and the amplitude of the oscillations is more dispersed, and the phase coherence decreases. We also found that the properties from exploring the effects of the inherent chemical rate parameters on the robustness. Our approach is quite general and can be applied to other oscillatory cellular network.PACS Codes: 87.18.-h, 87.18.Vf, 87.18.Yt.</p>\",\"PeriodicalId\":88297,\"journal\":{\"name\":\"PMC biophysics\",\"volume\":\"1 1\",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1757-5036-1-7\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PMC biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1757-5036-1-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PMC biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1757-5036-1-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

发现非平衡昼夜节律钟的全局概率性质对于解决鲁棒性和功能的重要问题至关重要。我们已经发现了一个简单的蓝藻生物化学网络的潜在势能景观,以及相应的通量,这是振荡的驱动力。我们发现,在存在微小统计波动的情况下,振荡的潜在潜在景观就像三维蛋白质浓度空间中的显式环谷或甜甜圈形状。我们发现隔离振荡环和其他区域的屏障高度是振荡鲁棒性的一个定量度量,并且随着波动的增加而减小。我们还发现表征耗散或热损失的熵产率随着波动的减小而减小。此外,我们发现,随着波动的增加,振荡的周期和振幅更加分散,相位相干性降低。我们还发现了固有化学速率参数对鲁棒性的影响。该方法具有较强的通用性,可应用于其他振荡蜂窝网络。PACS代码:87.18。- h, 87.18。Vf 87.18.Yt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robustness, dissipations and coherence of the oscillation of circadian clock: potential landscape and flux perspectives.

Finding the global probabilistic nature of a non-equilibrium circadian clock is essential for addressing important issues of robustness and function. We have uncovered the underlying potential energy landscape of a simple cyanobacteria biochemical network, and the corresponding flux which is the driving force for the oscillation. We found that the underlying potential landscape for the oscillation in the presence of small statistical fluctuations is like an explicit ring valley or doughnut shape in the three dimensional protein concentration space. We found that the barrier height separating the oscillation ring and other area is a quantitative measure of the oscillation robustness and decreases when the fluctuations increase. We also found that the entropy production rate characterizing the dissipation or heat loss decreases as the fluctuations decrease. In addition, we found that, as the fluctuations increase, the period and the amplitude of the oscillations is more dispersed, and the phase coherence decreases. We also found that the properties from exploring the effects of the inherent chemical rate parameters on the robustness. Our approach is quite general and can be applied to other oscillatory cellular network.PACS Codes: 87.18.-h, 87.18.Vf, 87.18.Yt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of steady-state fluorescence emission and anisotropy of merocyanine 540 to distinguish crystalline, gel, ripple, and liquid crystalline phases in dipalmitoylphosphatidylcholine bilayers. Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function. Bistability in the actin cortex. Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy. Combined molecular dynamics and continuum solvent studies of the pre-pore Cry4Aa trimer suggest its stability in solution and how it may form pore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1