Anja Henning, Jörg Henkel, Frank F Bier, Ralph Hölzel
{"title":"DNA介电反应的无标记电定量。","authors":"Anja Henning, Jörg Henkel, Frank F Bier, Ralph Hölzel","doi":"10.1186/1757-5036-1-4","DOIUrl":null,"url":null,"abstract":"<p><p> A purely electrical sensing scheme is presented that determines the concentration of macromolecules in solution by measuring the capacitance between planar microelectrodes. Concentrations of DNA in the ng/mL range have been used in samples of 1 muL volume. The method has been applied to the characterisation of the dielectrophoretic response of DNA without the need for any chemical modifications. The influence of electrical parameters like duty cycle, voltage and frequency has been investigated. The results are in good agreement with data from dielectrophoretic studies on fluorescently labelled DNA. Extension of the method down to the single molecule level appears feasible.PACS: 87.50.ch, 87.80.Fe, 87.85.fK.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"1 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-1-4","citationCount":"20","resultStr":"{\"title\":\"Label-free electrical quantification of the dielectrophoretic response of DNA.\",\"authors\":\"Anja Henning, Jörg Henkel, Frank F Bier, Ralph Hölzel\",\"doi\":\"10.1186/1757-5036-1-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> A purely electrical sensing scheme is presented that determines the concentration of macromolecules in solution by measuring the capacitance between planar microelectrodes. Concentrations of DNA in the ng/mL range have been used in samples of 1 muL volume. The method has been applied to the characterisation of the dielectrophoretic response of DNA without the need for any chemical modifications. The influence of electrical parameters like duty cycle, voltage and frequency has been investigated. The results are in good agreement with data from dielectrophoretic studies on fluorescently labelled DNA. Extension of the method down to the single molecule level appears feasible.PACS: 87.50.ch, 87.80.Fe, 87.85.fK.</p>\",\"PeriodicalId\":88297,\"journal\":{\"name\":\"PMC biophysics\",\"volume\":\"1 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1757-5036-1-4\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PMC biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1757-5036-1-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PMC biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1757-5036-1-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Label-free electrical quantification of the dielectrophoretic response of DNA.
A purely electrical sensing scheme is presented that determines the concentration of macromolecules in solution by measuring the capacitance between planar microelectrodes. Concentrations of DNA in the ng/mL range have been used in samples of 1 muL volume. The method has been applied to the characterisation of the dielectrophoretic response of DNA without the need for any chemical modifications. The influence of electrical parameters like duty cycle, voltage and frequency has been investigated. The results are in good agreement with data from dielectrophoretic studies on fluorescently labelled DNA. Extension of the method down to the single molecule level appears feasible.PACS: 87.50.ch, 87.80.Fe, 87.85.fK.