膜蛋白动力学:有限的脂质控制。

Balázs Szalontai
{"title":"膜蛋白动力学:有限的脂质控制。","authors":"Balázs Szalontai","doi":"10.1186/1757-5036-2-1","DOIUrl":null,"url":null,"abstract":"<p><p> Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality.PACS codes: 87.14.ep, 87.14.cc, 87.16.D.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"2 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666629/pdf/","citationCount":"0","resultStr":"{\"title\":\"Membrane protein dynamics: limited lipid control.\",\"authors\":\"Balázs Szalontai\",\"doi\":\"10.1186/1757-5036-2-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality.PACS codes: 87.14.ep, 87.14.cc, 87.16.D.</p>\",\"PeriodicalId\":88297,\"journal\":{\"name\":\"PMC biophysics\",\"volume\":\"2 1\",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PMC biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1757-5036-2-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PMC biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1757-5036-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过结合描述脂相、蛋白质结构以及通过氢-氘(H/D)交换描述蛋白质动态的数据,利用红外光谱对脂质紊乱与膜蛋白质动态的相关性进行了研究。其中的关键因素是一种新的测量方案,通过这种方案可以分离时间和温度对氢/氘交换的综合影响。研究人员对蓝藻和植物的类囊体膜、哺乳动物的线粒体膜以及溶菌酶进行了比较研究。在溶解的溶菌酶中,随着温度的变化,H/D 交换只涉及可逆运动(二级结构没有显著变化);在更高温度下,热变性是一个单独的事件。在生物膜的低温功能极限附近,脂质影响了蛋白质的动力学,因为脂肪酰基链紊乱和 H/D 交换的变化表现出一定的相关性。在生理温度下,所有膜的 H/D 交换量都很低。在膜的高温功能极限附近,交换率变得更高。当温度进一步升高时,H/D 交换率达到最高值,然后下降(由于充分的 H/D 交换和/或蛋白质变性)。最大 H/D 交换率温度与脂质的无序性和不饱和性都没有关系。在膜蛋白中,与溶菌酶相反,相当大的 H/D 交换率的起始点也是不可逆变性的起始点。似乎在蛋白质自动力学允许大规模 H/D 交换的温度下,脂质与蛋白质的耦合非常弱,以至于蛋白质更倾向于聚集,以限制其疏水表面区域暴露于水。在研究的所有膜中,动态似乎在低温极限附近由脂质控制,而在膜功能的高温极限附近由蛋白质控制。PACS 编码:87.14.ep, 87.14.cc, 87.16.D.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Membrane protein dynamics: limited lipid control.

Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality.PACS codes: 87.14.ep, 87.14.cc, 87.16.D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of steady-state fluorescence emission and anisotropy of merocyanine 540 to distinguish crystalline, gel, ripple, and liquid crystalline phases in dipalmitoylphosphatidylcholine bilayers. Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function. Bistability in the actin cortex. Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy. Combined molecular dynamics and continuum solvent studies of the pre-pore Cry4Aa trimer suggest its stability in solution and how it may form pore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1