Reiko Meguro, Yoshiya Asano, Saori Odagiri, Chengtai Li, Kazuhiko Shoumura
{"title":"大鼠脑中非血红素铁和亚铁的细胞和亚细胞定位:灌注- perls和-Turnbull方法的光镜和电镜研究。","authors":"Reiko Meguro, Yoshiya Asano, Saori Odagiri, Chengtai Li, Kazuhiko Shoumura","doi":"10.1679/aohc.71.205","DOIUrl":null,"url":null,"abstract":"<p><p>Iron in the brain is utilized for cellular respiration, neurotransmitter synthesis/degradation, and myelin formation. Iron, especially its ferrous form, also has the potential for catalyzing the Fenton reaction to generate highly cytotoxic hydroxyl radicals. The amount of iron in the brain must therefore be strictly controlled. In this study, we focused on the cellular and subcellular localizations of nonheme ferric (Fe(III)) and ferrous (Fe(II)) iron in the adult female rat brain using light and electron microscopic histochemistry. Although Fe(II) deposition was much less dominant than Fe(III), the brain contained iron in both forms. Among the cellular elements of the brain, oligodendrocytes were numerically the most prominent and heavily iron-storing cells. Pericapillary astrocytes and sporadic microglial cells also showed dense iron accumulation. Large neurons involved in the motor system were relatively strongly iron-positive. Subcellularly, Fe(III) and Fe(II) were mainly localized in lysosomes, and occasionally in the cytosol and mitochondria. Furthermore, capillary endothelial cells had Fe(III)-positive reactions in lysosomes and the cytosol, with Fe(II)-positive reactions on the luminal membrane. With advancing age, both Fe(III) and Fe(II) became more extensively distributed and accumulated more numerously in oligodendrocytes and astrocytes. These findings suggest that age-related increases in Fe(II) accumulation may raise the risk of tissue damage in the normal brain.</p>","PeriodicalId":8307,"journal":{"name":"Archives of histology and cytology","volume":"71 4","pages":"205-22"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1679/aohc.71.205","citationCount":"41","resultStr":"{\"title\":\"Cellular and subcellular localizations of nonheme ferric and ferrous iron in the rat brain: a light and electron microscopic study by the perfusion-Perls and -Turnbull methods.\",\"authors\":\"Reiko Meguro, Yoshiya Asano, Saori Odagiri, Chengtai Li, Kazuhiko Shoumura\",\"doi\":\"10.1679/aohc.71.205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron in the brain is utilized for cellular respiration, neurotransmitter synthesis/degradation, and myelin formation. Iron, especially its ferrous form, also has the potential for catalyzing the Fenton reaction to generate highly cytotoxic hydroxyl radicals. The amount of iron in the brain must therefore be strictly controlled. In this study, we focused on the cellular and subcellular localizations of nonheme ferric (Fe(III)) and ferrous (Fe(II)) iron in the adult female rat brain using light and electron microscopic histochemistry. Although Fe(II) deposition was much less dominant than Fe(III), the brain contained iron in both forms. Among the cellular elements of the brain, oligodendrocytes were numerically the most prominent and heavily iron-storing cells. Pericapillary astrocytes and sporadic microglial cells also showed dense iron accumulation. Large neurons involved in the motor system were relatively strongly iron-positive. Subcellularly, Fe(III) and Fe(II) were mainly localized in lysosomes, and occasionally in the cytosol and mitochondria. Furthermore, capillary endothelial cells had Fe(III)-positive reactions in lysosomes and the cytosol, with Fe(II)-positive reactions on the luminal membrane. With advancing age, both Fe(III) and Fe(II) became more extensively distributed and accumulated more numerously in oligodendrocytes and astrocytes. These findings suggest that age-related increases in Fe(II) accumulation may raise the risk of tissue damage in the normal brain.</p>\",\"PeriodicalId\":8307,\"journal\":{\"name\":\"Archives of histology and cytology\",\"volume\":\"71 4\",\"pages\":\"205-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1679/aohc.71.205\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of histology and cytology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1679/aohc.71.205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of histology and cytology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1679/aohc.71.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Cellular and subcellular localizations of nonheme ferric and ferrous iron in the rat brain: a light and electron microscopic study by the perfusion-Perls and -Turnbull methods.
Iron in the brain is utilized for cellular respiration, neurotransmitter synthesis/degradation, and myelin formation. Iron, especially its ferrous form, also has the potential for catalyzing the Fenton reaction to generate highly cytotoxic hydroxyl radicals. The amount of iron in the brain must therefore be strictly controlled. In this study, we focused on the cellular and subcellular localizations of nonheme ferric (Fe(III)) and ferrous (Fe(II)) iron in the adult female rat brain using light and electron microscopic histochemistry. Although Fe(II) deposition was much less dominant than Fe(III), the brain contained iron in both forms. Among the cellular elements of the brain, oligodendrocytes were numerically the most prominent and heavily iron-storing cells. Pericapillary astrocytes and sporadic microglial cells also showed dense iron accumulation. Large neurons involved in the motor system were relatively strongly iron-positive. Subcellularly, Fe(III) and Fe(II) were mainly localized in lysosomes, and occasionally in the cytosol and mitochondria. Furthermore, capillary endothelial cells had Fe(III)-positive reactions in lysosomes and the cytosol, with Fe(II)-positive reactions on the luminal membrane. With advancing age, both Fe(III) and Fe(II) became more extensively distributed and accumulated more numerously in oligodendrocytes and astrocytes. These findings suggest that age-related increases in Fe(II) accumulation may raise the risk of tissue damage in the normal brain.
期刊介绍:
The Archives of Histology and Cytology provides prompt publication in English of original works on the histology and histochemistry of man and animals. The articles published are in principle restricted to studies on vertebrates, but investigations using invertebrates may be accepted when the intention and results present issues of common interest to vertebrate researchers. Pathological studies may also be accepted, if the observations and interpretations are deemed to contribute toward increasing knowledge of the normal features of the cells or tissues concerned. This journal will also publish reviews offering evaluations and critical interpretations of recent studies and theories.