具有解剖学先验的MAP重构Ga-67 SPECT图像损伤检测的人-观察者LROC研究。

Andre Lehovich, Philippe P Bruyant, Howard C Gifford, Peter B Schneider, Shane Squires, Robert Licho, Gene Gindi, Michael A King
{"title":"具有解剖学先验的MAP重构Ga-67 SPECT图像损伤检测的人-观察者LROC研究。","authors":"Andre Lehovich,&nbsp;Philippe P Bruyant,&nbsp;Howard C Gifford,&nbsp;Peter B Schneider,&nbsp;Shane Squires,&nbsp;Robert Licho,&nbsp;Gene Gindi,&nbsp;Michael A King","doi":"10.1109/NSSMIC.2006.354226","DOIUrl":null,"url":null,"abstract":"<p><p>We compare the image quality of SPECT reconstruction with and without an anatomical prior. Area under the localization-response operating characteristic (LROC) curve is our figure of merit. Simulated Ga-67 citrate images, a SPECT lymph-nodule imaging agent, were generated using the MCAT digital phantom. Reconstructed images were read by human observers.Several reconstruction strategies are compared, including rescaled block iterative (RBI) and maximum-a-posteriori (MAP) with various priors. We find that MAP reconstruction using prior knowledge of organ and lesion boundaries significantly improves lesion-detection performance (p < 0.05). Pseudo-lesion boundaries, regions without increased uptake which are incorrectly treated as prior knowledge of lesion boundaries, do not decrease performance.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"3 ","pages":"1699-1702"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2006.354226","citationCount":"8","resultStr":"{\"title\":\"Human-observer LROC study of lesion detection in Ga-67 SPECT images reconstructed using MAP with anatomical priors.\",\"authors\":\"Andre Lehovich,&nbsp;Philippe P Bruyant,&nbsp;Howard C Gifford,&nbsp;Peter B Schneider,&nbsp;Shane Squires,&nbsp;Robert Licho,&nbsp;Gene Gindi,&nbsp;Michael A King\",\"doi\":\"10.1109/NSSMIC.2006.354226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We compare the image quality of SPECT reconstruction with and without an anatomical prior. Area under the localization-response operating characteristic (LROC) curve is our figure of merit. Simulated Ga-67 citrate images, a SPECT lymph-nodule imaging agent, were generated using the MCAT digital phantom. Reconstructed images were read by human observers.Several reconstruction strategies are compared, including rescaled block iterative (RBI) and maximum-a-posteriori (MAP) with various priors. We find that MAP reconstruction using prior knowledge of organ and lesion boundaries significantly improves lesion-detection performance (p < 0.05). Pseudo-lesion boundaries, regions without increased uptake which are incorrectly treated as prior knowledge of lesion boundaries, do not decrease performance.</p>\",\"PeriodicalId\":73298,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"volume\":\"3 \",\"pages\":\"1699-1702\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/NSSMIC.2006.354226\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2006.354226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2006.354226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们比较图像质量的SPECT重建与没有解剖先验。定位-响应工作特性(LROC)曲线下的面积是我们的优值。模拟Ga-67柠檬酸盐图像,SPECT淋巴结节显像剂,使用MCAT数字幻影生成。重建的图像由人类观察者阅读。比较了几种重构策略,包括重尺度块迭代(RBI)和具有不同先验的最大后验(MAP)。我们发现,利用器官和病变边界的先验知识重建MAP可显著提高病变检测性能(p < 0.05)。伪病变边界,没有增加摄取的区域,被错误地视为病变边界的先验知识,不会降低性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-observer LROC study of lesion detection in Ga-67 SPECT images reconstructed using MAP with anatomical priors.

We compare the image quality of SPECT reconstruction with and without an anatomical prior. Area under the localization-response operating characteristic (LROC) curve is our figure of merit. Simulated Ga-67 citrate images, a SPECT lymph-nodule imaging agent, were generated using the MCAT digital phantom. Reconstructed images were read by human observers.Several reconstruction strategies are compared, including rescaled block iterative (RBI) and maximum-a-posteriori (MAP) with various priors. We find that MAP reconstruction using prior knowledge of organ and lesion boundaries significantly improves lesion-detection performance (p < 0.05). Pseudo-lesion boundaries, regions without increased uptake which are incorrectly treated as prior knowledge of lesion boundaries, do not decrease performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1