超出衍射极限的光学显微镜。

Hfsp Journal Pub Date : 2008-06-01 Epub Date: 2008-04-18 DOI:10.2976/1.2912559
Igor I Smolyaninov
{"title":"超出衍射极限的光学显微镜。","authors":"Igor I Smolyaninov","doi":"10.2976/1.2912559","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past century the resolution of far-field optical microscopes, which rely on propagating optical modes, was widely believed to be limited because of diffraction to a value on the order of a half-wavelength lambda2 of the light used. Although immersion microscopes had slightly improved resolution on the order of lambda2n, the increased resolution was limited by the small range of refractive indices, n, of available transparent materials. We are experiencing quick demolition of the diffraction limit in optical microscopy. Over the past few years numerous nonlinear optical microscopy techniques based on photoswitching and saturation of fluorescence demonstrated far-field resolution of 20 to 30 nm. The latest exciting example of these techniques has been demonstrated by Huang et al. [Science 319, 810-813 (2008)]. Moreover, recent progress in metamaterials indicates that artificial optical media can be created, which do not exhibit the diffraction limit. Resolution of linear \"immersion\" microscopes based on such metamaterials appears limited only by losses, which can be compensated by gain media. Thus, optical microscopy is quickly moving towards the 10 nm resolution scale, which should bring about numerous revolutionary advances in biomedical imaging.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"2 3","pages":"129-31"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2976/1.2912559","citationCount":"15","resultStr":"{\"title\":\"Optical microscopy beyond the diffraction limit.\",\"authors\":\"Igor I Smolyaninov\",\"doi\":\"10.2976/1.2912559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past century the resolution of far-field optical microscopes, which rely on propagating optical modes, was widely believed to be limited because of diffraction to a value on the order of a half-wavelength lambda2 of the light used. Although immersion microscopes had slightly improved resolution on the order of lambda2n, the increased resolution was limited by the small range of refractive indices, n, of available transparent materials. We are experiencing quick demolition of the diffraction limit in optical microscopy. Over the past few years numerous nonlinear optical microscopy techniques based on photoswitching and saturation of fluorescence demonstrated far-field resolution of 20 to 30 nm. The latest exciting example of these techniques has been demonstrated by Huang et al. [Science 319, 810-813 (2008)]. Moreover, recent progress in metamaterials indicates that artificial optical media can be created, which do not exhibit the diffraction limit. Resolution of linear \\\"immersion\\\" microscopes based on such metamaterials appears limited only by losses, which can be compensated by gain media. Thus, optical microscopy is quickly moving towards the 10 nm resolution scale, which should bring about numerous revolutionary advances in biomedical imaging.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"2 3\",\"pages\":\"129-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2976/1.2912559\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.2912559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2008/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.2912559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/4/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在过去的一个世纪里,人们普遍认为依赖于传播光学模式的远场光学显微镜的分辨率是有限的,因为衍射的值大约是所用光的半波长。虽然浸入式显微镜的分辨率略有提高,约为lambda2n,但由于现有透明材料的折射率n范围小,分辨率的提高受到限制。我们正在经历光学显微镜中衍射极限的快速破坏。在过去的几年中,许多基于光电开关和荧光饱和的非线性光学显微镜技术证明了远场分辨率为20至30 nm。Huang等人已经证明了这些技术的最新令人兴奋的例子[Science 319, 810-813(2008)]。此外,最近在超材料方面的进展表明,可以制造出不表现出衍射极限的人工光学介质。基于这种超材料的线性“浸入式”显微镜的分辨率似乎只受损耗的限制,而损耗可以通过增益介质来补偿。因此,光学显微镜正在迅速向10纳米分辨率发展,这将为生物医学成像带来许多革命性的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical microscopy beyond the diffraction limit.

Over the past century the resolution of far-field optical microscopes, which rely on propagating optical modes, was widely believed to be limited because of diffraction to a value on the order of a half-wavelength lambda2 of the light used. Although immersion microscopes had slightly improved resolution on the order of lambda2n, the increased resolution was limited by the small range of refractive indices, n, of available transparent materials. We are experiencing quick demolition of the diffraction limit in optical microscopy. Over the past few years numerous nonlinear optical microscopy techniques based on photoswitching and saturation of fluorescence demonstrated far-field resolution of 20 to 30 nm. The latest exciting example of these techniques has been demonstrated by Huang et al. [Science 319, 810-813 (2008)]. Moreover, recent progress in metamaterials indicates that artificial optical media can be created, which do not exhibit the diffraction limit. Resolution of linear "immersion" microscopes based on such metamaterials appears limited only by losses, which can be compensated by gain media. Thus, optical microscopy is quickly moving towards the 10 nm resolution scale, which should bring about numerous revolutionary advances in biomedical imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hfsp Journal
Hfsp Journal 综合性期刊-综合性期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Frontiers in life science. Inherited adaptation of genome-rewired cells in response to a challenging environment. Network reconstruction reveals new links between aging and calorie restriction in yeast. Molecular motors as an auto-oscillator. Robustness versus evolvability: a paradigm revisited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1