微生物群落中生物之间的化学相互作用。

Contributions to microbiology Pub Date : 2009-01-01 Epub Date: 2009-06-02 DOI:10.1159/000219369
Kangmin Duan, Christopher D Sibley, Carla J Davidson, Michael G Surette
{"title":"微生物群落中生物之间的化学相互作用。","authors":"Kangmin Duan,&nbsp;Christopher D Sibley,&nbsp;Carla J Davidson,&nbsp;Michael G Surette","doi":"10.1159/000219369","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria live almost exclusively in communities with other microorganisms, and often in association with multicellular hosts. These communities are capable of maintaining complex structural and functional stability over time, and exhibit fascinating properties of resiliency in response to environmental changes. This is a result of interactions between microbes and the environment and amongst members of the community. A multitude of chemical interactions occur in microbial communities where primary and secondary metabolites contribute to a wealth of interactions between organisms. The chemicals include a variety of nutrients, toxic or neutral metabolic byproducts, antibiotics, and cell-cell signaling molecules. These chemical and physical signals facilitate microbial relationship that can be competitive, cooperative or neutral, and thus are responsible for determining community structure. In turn, the surrounding community changes the microenvironment of individual cells who respond to chemical and environmental cues in a combinatorial manner. Current laboratory understanding of the genetics and mechanisms of interactions between microbes has the power to help us understand how complex microbial communities behave in the natural environment. In this chapter we review the current understanding of microbial communication, from the genetic and molecular aspects, to our current understanding of their ecological role.</p>","PeriodicalId":79855,"journal":{"name":"Contributions to microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000219369","citationCount":"43","resultStr":"{\"title\":\"Chemical interactions between organisms in microbial communities.\",\"authors\":\"Kangmin Duan,&nbsp;Christopher D Sibley,&nbsp;Carla J Davidson,&nbsp;Michael G Surette\",\"doi\":\"10.1159/000219369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria live almost exclusively in communities with other microorganisms, and often in association with multicellular hosts. These communities are capable of maintaining complex structural and functional stability over time, and exhibit fascinating properties of resiliency in response to environmental changes. This is a result of interactions between microbes and the environment and amongst members of the community. A multitude of chemical interactions occur in microbial communities where primary and secondary metabolites contribute to a wealth of interactions between organisms. The chemicals include a variety of nutrients, toxic or neutral metabolic byproducts, antibiotics, and cell-cell signaling molecules. These chemical and physical signals facilitate microbial relationship that can be competitive, cooperative or neutral, and thus are responsible for determining community structure. In turn, the surrounding community changes the microenvironment of individual cells who respond to chemical and environmental cues in a combinatorial manner. Current laboratory understanding of the genetics and mechanisms of interactions between microbes has the power to help us understand how complex microbial communities behave in the natural environment. In this chapter we review the current understanding of microbial communication, from the genetic and molecular aspects, to our current understanding of their ecological role.</p>\",\"PeriodicalId\":79855,\"journal\":{\"name\":\"Contributions to microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000219369\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000219369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000219369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/6/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

细菌几乎完全与其他微生物一起生活,并且经常与多细胞宿主一起生活。随着时间的推移,这些群落能够保持复杂的结构和功能稳定性,并在应对环境变化时表现出迷人的弹性。这是微生物与环境以及群落成员之间相互作用的结果。许多化学相互作用发生在微生物群落中,其中初级和次级代谢物促成了生物体之间丰富的相互作用。这些化学物质包括各种营养物质、有毒或中性代谢副产物、抗生素和细胞-细胞信号分子。这些化学和物理信号促进微生物之间的关系,可以是竞争的,合作的或中立的,因此负责决定群落结构。反过来,周围的群落改变了个体细胞的微环境,这些细胞以组合的方式对化学和环境线索做出反应。目前对微生物之间相互作用的遗传学和机制的实验室理解有能力帮助我们了解复杂的微生物群落在自然环境中的行为。在本章中,我们回顾了目前对微生物通讯的理解,从遗传和分子方面,到我们目前对它们的生态作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical interactions between organisms in microbial communities.

Bacteria live almost exclusively in communities with other microorganisms, and often in association with multicellular hosts. These communities are capable of maintaining complex structural and functional stability over time, and exhibit fascinating properties of resiliency in response to environmental changes. This is a result of interactions between microbes and the environment and amongst members of the community. A multitude of chemical interactions occur in microbial communities where primary and secondary metabolites contribute to a wealth of interactions between organisms. The chemicals include a variety of nutrients, toxic or neutral metabolic byproducts, antibiotics, and cell-cell signaling molecules. These chemical and physical signals facilitate microbial relationship that can be competitive, cooperative or neutral, and thus are responsible for determining community structure. In turn, the surrounding community changes the microenvironment of individual cells who respond to chemical and environmental cues in a combinatorial manner. Current laboratory understanding of the genetics and mechanisms of interactions between microbes has the power to help us understand how complex microbial communities behave in the natural environment. In this chapter we review the current understanding of microbial communication, from the genetic and molecular aspects, to our current understanding of their ecological role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical aspects of sepsis. Virulence factors of gram-negative bacteria in sepsis with a focus on Neisseria meningitidis. Molecular mechanisms of sepsis. Pro-inflammatory mechanisms in sepsis. Anti-inflammatory mechanisms of sepsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1