p53 错义癌症突变的结构和功能影响。

Yuhong Tan, Ray Luo
{"title":"p53 错义癌症突变的结构和功能影响。","authors":"Yuhong Tan, Ray Luo","doi":"10.1186/1757-5036-2-5","DOIUrl":null,"url":null,"abstract":"<p><p> Most human cancers contain mutations in the transcription factor p53 and majority of these are missense and located in the DNA binding core domain. In this study, the stabilities of all core domain missense mutations are predicted and are used to infer their likely inactivation mechanisms. Overall, 47.0% non-PRO/GLY mutants are stable (DeltaDeltaG < 1.0 kT) and 36.3% mutants are unstable (DeltaDeltaG > 3.0 kT), 12.2% mutants are with 1.0 kT < DeltaDeltaG < 3.0 kT. Only 4.5% mutants are with no conclusive predictions. Certain types of either stable or unstable mutations are found not to depend on their local structures. Y, I, C, V, F and W (W, R and F) are the most common residues before (after) mutation in unstable mutants. Q, N, K, D, A, S and T (I, T, L and V) are the most common residues before (after) mutation in stable mutants. The stability correlations with sequence, structure, and molecular contacts are also analyzed. No direct correlation between secondary structure and stability is apparent, but a strong correlation between solvent exposure and stability is noticeable. Our correlation analysis shows that loss of protein-protein contacts may be an alternative cause for p53 inactivation. Correlation with clinical data shows that loss of stability and loss of DNA contacts are the two main inactivation mechanisms. Finally, correlation with functional data shows that most mutations which retain functions are stable, and most mutations that gain functions are unstable, indicating destabilized and deformed p53 proteins are more likely to find new binding partners.PACS codes: 87.14.E-</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"2 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709103/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural and functional implications of p53 missense cancer mutations.\",\"authors\":\"Yuhong Tan, Ray Luo\",\"doi\":\"10.1186/1757-5036-2-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Most human cancers contain mutations in the transcription factor p53 and majority of these are missense and located in the DNA binding core domain. In this study, the stabilities of all core domain missense mutations are predicted and are used to infer their likely inactivation mechanisms. Overall, 47.0% non-PRO/GLY mutants are stable (DeltaDeltaG < 1.0 kT) and 36.3% mutants are unstable (DeltaDeltaG > 3.0 kT), 12.2% mutants are with 1.0 kT < DeltaDeltaG < 3.0 kT. Only 4.5% mutants are with no conclusive predictions. Certain types of either stable or unstable mutations are found not to depend on their local structures. Y, I, C, V, F and W (W, R and F) are the most common residues before (after) mutation in unstable mutants. Q, N, K, D, A, S and T (I, T, L and V) are the most common residues before (after) mutation in stable mutants. The stability correlations with sequence, structure, and molecular contacts are also analyzed. No direct correlation between secondary structure and stability is apparent, but a strong correlation between solvent exposure and stability is noticeable. Our correlation analysis shows that loss of protein-protein contacts may be an alternative cause for p53 inactivation. Correlation with clinical data shows that loss of stability and loss of DNA contacts are the two main inactivation mechanisms. Finally, correlation with functional data shows that most mutations which retain functions are stable, and most mutations that gain functions are unstable, indicating destabilized and deformed p53 proteins are more likely to find new binding partners.PACS codes: 87.14.E-</p>\",\"PeriodicalId\":88297,\"journal\":{\"name\":\"PMC biophysics\",\"volume\":\"2 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PMC biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1757-5036-2-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PMC biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1757-5036-2-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数人类癌症的转录因子 p53 都含有突变,其中大部分是位于 DNA 结合核心结构域的错义突变。本研究预测了所有核心结构域错义突变的稳定性,并以此推断其可能的失活机制。总体而言,47.0%的非 PRO/GLY 突变体是稳定的(DeltaDeltaG < 1.0 kT),36.3%的突变体是不稳定的(DeltaDeltaG > 3.0 kT),12.2%的突变体是 1.0 kT < DeltaDeltaG < 3.0 kT。只有 4.5%的突变体没有确定的预测结果。某些类型的稳定或不稳定突变与它们的局部结构无关。Y、I、C、V、F 和 W(W、R 和 F)是不稳定突变体突变前(后)最常见的残基。在稳定突变体中,Q、N、K、D、A、S 和 T(I、T、L 和 V)是突变前(后)最常见的残基。此外,还分析了稳定性与序列、结构和分子接触的相关性。二级结构与稳定性之间没有明显的直接相关性,但溶剂暴露与稳定性之间存在明显的强相关性。我们的相关性分析表明,蛋白质-蛋白质接触的丧失可能是导致 p53 失活的另一个原因。与临床数据的相关性表明,稳定性丧失和 DNA 接触丧失是两种主要的失活机制。最后,与功能数据的相关性表明,大多数保留功能的突变是稳定的,而大多数获得功能的突变是不稳定的,这表明失稳和变形的 p53 蛋白更有可能找到新的结合伙伴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural and functional implications of p53 missense cancer mutations.

Most human cancers contain mutations in the transcription factor p53 and majority of these are missense and located in the DNA binding core domain. In this study, the stabilities of all core domain missense mutations are predicted and are used to infer their likely inactivation mechanisms. Overall, 47.0% non-PRO/GLY mutants are stable (DeltaDeltaG < 1.0 kT) and 36.3% mutants are unstable (DeltaDeltaG > 3.0 kT), 12.2% mutants are with 1.0 kT < DeltaDeltaG < 3.0 kT. Only 4.5% mutants are with no conclusive predictions. Certain types of either stable or unstable mutations are found not to depend on their local structures. Y, I, C, V, F and W (W, R and F) are the most common residues before (after) mutation in unstable mutants. Q, N, K, D, A, S and T (I, T, L and V) are the most common residues before (after) mutation in stable mutants. The stability correlations with sequence, structure, and molecular contacts are also analyzed. No direct correlation between secondary structure and stability is apparent, but a strong correlation between solvent exposure and stability is noticeable. Our correlation analysis shows that loss of protein-protein contacts may be an alternative cause for p53 inactivation. Correlation with clinical data shows that loss of stability and loss of DNA contacts are the two main inactivation mechanisms. Finally, correlation with functional data shows that most mutations which retain functions are stable, and most mutations that gain functions are unstable, indicating destabilized and deformed p53 proteins are more likely to find new binding partners.PACS codes: 87.14.E-

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of steady-state fluorescence emission and anisotropy of merocyanine 540 to distinguish crystalline, gel, ripple, and liquid crystalline phases in dipalmitoylphosphatidylcholine bilayers. Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function. Bistability in the actin cortex. Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy. Combined molecular dynamics and continuum solvent studies of the pre-pore Cry4Aa trimer suggest its stability in solution and how it may form pore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1