正常人与癫痫患者脑电图信号非线性特性的比较研究。

Md Nurujjaman, Ramesh Narayanan, An Sekar Iyengar
{"title":"正常人与癫痫患者脑电图信号非线性特性的比较研究。","authors":"Md Nurujjaman,&nbsp;Ramesh Narayanan,&nbsp;An Sekar Iyengar","doi":"10.1186/1753-4631-3-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder can affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent.</p><p><strong>Results: </strong>Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak et al. [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases.</p><p><strong>Conclusion: </strong>In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"3 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-3-6","citationCount":"48","resultStr":"{\"title\":\"Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients.\",\"authors\":\"Md Nurujjaman,&nbsp;Ramesh Narayanan,&nbsp;An Sekar Iyengar\",\"doi\":\"10.1186/1753-4631-3-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder can affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent.</p><p><strong>Results: </strong>Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak et al. [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases.</p><p><strong>Conclusion: </strong>In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation.</p>\",\"PeriodicalId\":87480,\"journal\":{\"name\":\"Nonlinear biomedical physics\",\"volume\":\"3 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1753-4631-3-6\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear biomedical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1753-4631-3-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear biomedical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1753-4631-3-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

背景:研究大脑在生命系统中的功能一直是科学家和医学从业者的主要努力。在各种大脑疾病中,癫痫引起了最多的关注,因为这种疾病会影响一个人的生活质量。本文应用代理分析、概率分布函数和赫斯特指数对正常和癫痫患者的脑电图进行了重新研究。结果:采用随机shuffle替代分析,我们获得了Andrzejak等人[Phys Rev E 2001,64:06 - 1907]得到的癫痫患者癫痫发作时的一些非线性特征。概率分布函数表明癫痫病人的大脑活动在本质上是非高斯的。赫斯特指数已被证明对描述正常和癫痫大脑很有用它表明癫痫大脑是长期反相关的而正常大脑或多或少是随机的。在这里使用的所有技术中,赫斯特指数对于描述不同的情况非常有用。结论:本文主要用赫斯特指数显示正常人睁眼、闭眼、癫痫发作时和非发作期的特征差异。H表示正常人的大脑活动在本质上是不相关的,而癫痫患者的大脑活动则显示出长期的反相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients.

Background: Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder can affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent.

Results: Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak et al. [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases.

Conclusion: In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the distensibility of large arteries on the longitudinal impedance: application for the development of non-invasive techniques to the diagnosis of arterial diseases. Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection. Nonlinear changes in the activity of the oxygen-dependent demethylase system in Rhodococcus erythropolis cells in the presence of low and very low doses of formaldehyde. Entrainment of marginally stable excitation waves by spatially extended sub-threshold periodic forcing. Econobiophysics - game of choosing. Model of selection or election process with diverse accessible information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1