{"title":"来自深海的主题。","authors":"Tony W Hwang, Vlad Codrea, Andrew D Ellington","doi":"10.1186/jbiol174","DOIUrl":null,"url":null,"abstract":"<p><p>Because of the increasing recognition of the importance of non-coding RNAs in gene regulation, there is considerable interest in identifying RNA motifs in genomic data. In a recent report in BMC Genomics, Breaker and colleagues describe a new algorithm for identifying functional noncoding RNAs in metagenomic sequences of marine organisms, a strategy that may be particularly effective for discovering new and unique riboswitches.</p>","PeriodicalId":15075,"journal":{"name":"Journal of Biology","volume":"8 8","pages":"72"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/jbiol174","citationCount":"0","resultStr":"{\"title\":\"Motifs from the deep.\",\"authors\":\"Tony W Hwang, Vlad Codrea, Andrew D Ellington\",\"doi\":\"10.1186/jbiol174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because of the increasing recognition of the importance of non-coding RNAs in gene regulation, there is considerable interest in identifying RNA motifs in genomic data. In a recent report in BMC Genomics, Breaker and colleagues describe a new algorithm for identifying functional noncoding RNAs in metagenomic sequences of marine organisms, a strategy that may be particularly effective for discovering new and unique riboswitches.</p>\",\"PeriodicalId\":15075,\"journal\":{\"name\":\"Journal of Biology\",\"volume\":\"8 8\",\"pages\":\"72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/jbiol174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/jbiol174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/jbiol174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Because of the increasing recognition of the importance of non-coding RNAs in gene regulation, there is considerable interest in identifying RNA motifs in genomic data. In a recent report in BMC Genomics, Breaker and colleagues describe a new algorithm for identifying functional noncoding RNAs in metagenomic sequences of marine organisms, a strategy that may be particularly effective for discovering new and unique riboswitches.