RNAi试剂在小鼠肥胖和糖尿病模型中的传递。

Denise M Wilcox, Ruojing Yang, Sherry J Morgan, Phong T Nguyen, Martin J Voorbach, Paul M Jung, Deanna L Haasch, Emily Lin, Eugene N Bush, Terry J Opgenorth, Peer B Jacobson, Christine A Collins, Cristina M Rondinone, Terry Surowy, Katherine T Landschulz
{"title":"RNAi试剂在小鼠肥胖和糖尿病模型中的传递。","authors":"Denise M Wilcox,&nbsp;Ruojing Yang,&nbsp;Sherry J Morgan,&nbsp;Phong T Nguyen,&nbsp;Martin J Voorbach,&nbsp;Paul M Jung,&nbsp;Deanna L Haasch,&nbsp;Emily Lin,&nbsp;Eugene N Bush,&nbsp;Terry J Opgenorth,&nbsp;Peer B Jacobson,&nbsp;Christine A Collins,&nbsp;Cristina M Rondinone,&nbsp;Terry Surowy,&nbsp;Katherine T Landschulz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>RNA interference (RNAi) is an exciting new tool to effect acute in vivo knockdown of genes for pharmacological target validation. Testing the application of this technology to metabolic disease targets, three RNAi delivery methods were compared in two frequently utilized preclinical models of obesity and diabetes, the diet-induced obese (DIO) and B6.V-Lep<ob>/J (ob/ob) mouse. Intraperitoneal (i.p.) and high pressure hydrodynamic intravenous (i.v.) administration of naked siRNA, and low pressure i.v. administration of shRNA-expressing adenovirus were assessed for both safety and gene knockdown efficacy using constructs targeting cJun N-terminal kinase 1 (JNK1). Hydrodynamic delivery of siRNA lowered liver JNK1 protein levels 40% in DIO mice, but was accompanied by iatrogenic liver damage. The ob/ob model proved even more intolerant of this technique, with hydrodynamic delivery resulting in severe liver damage and death of most animals. While well-tolerated, i.p. injections of siRNA in DIO mice did not result in any knockdown or phenotypic changes in the mice. On the other hand, i.v. injected adenovirus expressing shRNA potently reduced expression of JNK1 in vivo by 95% without liver toxicity. In conclusion, i.p. and hydrodynamic injections of siRNA were ineffective and/or inappropriate for in vivo gene targeting in DIO and ob/ob mice, while adenovirus-mediated delivery of shRNA provided a relatively benign and effective method for exploring liver target silencing.</p>","PeriodicalId":88272,"journal":{"name":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","volume":"3 1","pages":"225-36"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737213/pdf/","citationCount":"0","resultStr":"{\"title\":\"Delivery of RNAi reagents in murine models of obesity and diabetes.\",\"authors\":\"Denise M Wilcox,&nbsp;Ruojing Yang,&nbsp;Sherry J Morgan,&nbsp;Phong T Nguyen,&nbsp;Martin J Voorbach,&nbsp;Paul M Jung,&nbsp;Deanna L Haasch,&nbsp;Emily Lin,&nbsp;Eugene N Bush,&nbsp;Terry J Opgenorth,&nbsp;Peer B Jacobson,&nbsp;Christine A Collins,&nbsp;Cristina M Rondinone,&nbsp;Terry Surowy,&nbsp;Katherine T Landschulz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA interference (RNAi) is an exciting new tool to effect acute in vivo knockdown of genes for pharmacological target validation. Testing the application of this technology to metabolic disease targets, three RNAi delivery methods were compared in two frequently utilized preclinical models of obesity and diabetes, the diet-induced obese (DIO) and B6.V-Lep<ob>/J (ob/ob) mouse. Intraperitoneal (i.p.) and high pressure hydrodynamic intravenous (i.v.) administration of naked siRNA, and low pressure i.v. administration of shRNA-expressing adenovirus were assessed for both safety and gene knockdown efficacy using constructs targeting cJun N-terminal kinase 1 (JNK1). Hydrodynamic delivery of siRNA lowered liver JNK1 protein levels 40% in DIO mice, but was accompanied by iatrogenic liver damage. The ob/ob model proved even more intolerant of this technique, with hydrodynamic delivery resulting in severe liver damage and death of most animals. While well-tolerated, i.p. injections of siRNA in DIO mice did not result in any knockdown or phenotypic changes in the mice. On the other hand, i.v. injected adenovirus expressing shRNA potently reduced expression of JNK1 in vivo by 95% without liver toxicity. In conclusion, i.p. and hydrodynamic injections of siRNA were ineffective and/or inappropriate for in vivo gene targeting in DIO and ob/ob mice, while adenovirus-mediated delivery of shRNA provided a relatively benign and effective method for exploring liver target silencing.</p>\",\"PeriodicalId\":88272,\"journal\":{\"name\":\"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research\",\"volume\":\"3 1\",\"pages\":\"225-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

RNA干扰(RNAi)是一种令人兴奋的新工具,可以影响体内基因的急性敲低,以进行药理学靶标验证。为了测试该技术在代谢疾病靶点上的应用,我们在两种常用的肥胖和糖尿病临床前模型——饮食性肥胖(DIO)和B6中比较了三种RNAi递送方法。V-Lep/J (ob/ob)鼠标。利用靶向cJun n -末端激酶1 (JNK1)的构建物,评估了裸siRNA腹腔(i.p)和高压流体动力静脉(i.v)给药,以及表达shrna的腺病毒低压静脉给药的安全性和基因敲低效果。水动力递送siRNA使DIO小鼠肝脏JNK1蛋白水平降低40%,但伴有医源性肝损伤。事实证明,ob/ob模型对这种技术更不耐受,流体动力学分娩导致大多数动物严重肝损伤和死亡。虽然耐受良好,但在DIO小鼠中腹腔注射siRNA不会导致小鼠的任何敲低或表型变化。另一方面,静脉注射表达shRNA的腺病毒可使体内JNK1的表达降低95%,且无肝毒性。综上所述,在DIO和ob/ob小鼠体内注射siRNA是无效的和/或不合适的,而腺病毒介导的shRNA递送为探索肝脏靶基因沉默提供了一种相对良性和有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delivery of RNAi reagents in murine models of obesity and diabetes.

RNA interference (RNAi) is an exciting new tool to effect acute in vivo knockdown of genes for pharmacological target validation. Testing the application of this technology to metabolic disease targets, three RNAi delivery methods were compared in two frequently utilized preclinical models of obesity and diabetes, the diet-induced obese (DIO) and B6.V-Lep/J (ob/ob) mouse. Intraperitoneal (i.p.) and high pressure hydrodynamic intravenous (i.v.) administration of naked siRNA, and low pressure i.v. administration of shRNA-expressing adenovirus were assessed for both safety and gene knockdown efficacy using constructs targeting cJun N-terminal kinase 1 (JNK1). Hydrodynamic delivery of siRNA lowered liver JNK1 protein levels 40% in DIO mice, but was accompanied by iatrogenic liver damage. The ob/ob model proved even more intolerant of this technique, with hydrodynamic delivery resulting in severe liver damage and death of most animals. While well-tolerated, i.p. injections of siRNA in DIO mice did not result in any knockdown or phenotypic changes in the mice. On the other hand, i.v. injected adenovirus expressing shRNA potently reduced expression of JNK1 in vivo by 95% without liver toxicity. In conclusion, i.p. and hydrodynamic injections of siRNA were ineffective and/or inappropriate for in vivo gene targeting in DIO and ob/ob mice, while adenovirus-mediated delivery of shRNA provided a relatively benign and effective method for exploring liver target silencing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties and kinetics of microRNA regulation through canonical seed sites. Aptamer-mediated selective delivery of short RNA therapeutics in cancer cells. Enzyme-triggered PEGylated siRNA-nanoparticles for controlled release of siRNA. RNAi2013: RNAi at Oxford. Sub-cellular temporal and spatial distribution of electrotransferred LNA/DNA oligomer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1