Hai-Li Ma, Yun-Lei Peng, Lili Gong, Wen-Bin Liu, Shuming Sun, Jiao Liu, Chun-Bing Zheng, Hu Fu, Dan Yuan, Junqiong Zhao, Pei-Chao Chen, Si-si Xie, Xiao-Ming Zeng, Ya-Mei Xiao, Yun Liu, David Wan-Cheng Li
{"title":"金鱼 SG2NA 基因编码 PP-2A 的两个α型调节亚基,并显示出独特的发育表达模式。","authors":"Hai-Li Ma, Yun-Lei Peng, Lili Gong, Wen-Bin Liu, Shuming Sun, Jiao Liu, Chun-Bing Zheng, Hu Fu, Dan Yuan, Junqiong Zhao, Pei-Chao Chen, Si-si Xie, Xiao-Ming Zeng, Ya-Mei Xiao, Yun Liu, David Wan-Cheng Li","doi":"10.4137/grsb.s2764","DOIUrl":null,"url":null,"abstract":"<p><p>SG2NA is a member of the striatin protein family. In human and mouse, the SG2NA gene encodes two major protein isoforms: SG2NA alpha and SG2NA beta. The functions of these proteins, except for acting as the regulatory subunits for PP-2A, remain largely unknown. To explore the possible functions of SG2NA in lower vertebrates, we have isolated two SG2NA cDNAs from goldfish, Carassius auratus. Our results reveal that the first cDNA contains an ORF of 2118 bp encoding a deduced protein with 705 amino acids, and the second one 2148 bp coding for a deduced protein of 715 amino acids. Comparative analysis reveals that both isoforms belong to the alpha-type, and are named SG2NA alpha and SG2NA alpha(+). RT-PCR and western blot analysis reveal that the SG2NA gene is differentially expressed in 9 tissues examined. During goldfish development, while the SG2NA mRNAs remain relatively constant in the first 3 stages and then become decreased and fluctuated from gastrula to larval hatching, the SG2NA proteins are fluctuated, displaying a peak every 3 to 4 stages. Each later peak is higher than the earlier one and the protein expression level becomes maximal at hatching stage. Together, our results reveal that SG2NA may play an important role during goldfish development and also in homeostasis of most adult tissues.</p>","PeriodicalId":73138,"journal":{"name":"Gene regulation and systems biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758282/pdf/","citationCount":"0","resultStr":"{\"title\":\"The goldfish SG2NA gene encodes two alpha-type regulatory subunits for PP-2A and displays distinct developmental expression pattern.\",\"authors\":\"Hai-Li Ma, Yun-Lei Peng, Lili Gong, Wen-Bin Liu, Shuming Sun, Jiao Liu, Chun-Bing Zheng, Hu Fu, Dan Yuan, Junqiong Zhao, Pei-Chao Chen, Si-si Xie, Xiao-Ming Zeng, Ya-Mei Xiao, Yun Liu, David Wan-Cheng Li\",\"doi\":\"10.4137/grsb.s2764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SG2NA is a member of the striatin protein family. In human and mouse, the SG2NA gene encodes two major protein isoforms: SG2NA alpha and SG2NA beta. The functions of these proteins, except for acting as the regulatory subunits for PP-2A, remain largely unknown. To explore the possible functions of SG2NA in lower vertebrates, we have isolated two SG2NA cDNAs from goldfish, Carassius auratus. Our results reveal that the first cDNA contains an ORF of 2118 bp encoding a deduced protein with 705 amino acids, and the second one 2148 bp coding for a deduced protein of 715 amino acids. Comparative analysis reveals that both isoforms belong to the alpha-type, and are named SG2NA alpha and SG2NA alpha(+). RT-PCR and western blot analysis reveal that the SG2NA gene is differentially expressed in 9 tissues examined. During goldfish development, while the SG2NA mRNAs remain relatively constant in the first 3 stages and then become decreased and fluctuated from gastrula to larval hatching, the SG2NA proteins are fluctuated, displaying a peak every 3 to 4 stages. Each later peak is higher than the earlier one and the protein expression level becomes maximal at hatching stage. Together, our results reveal that SG2NA may play an important role during goldfish development and also in homeostasis of most adult tissues.</p>\",\"PeriodicalId\":73138,\"journal\":{\"name\":\"Gene regulation and systems biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758282/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene regulation and systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/grsb.s2764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene regulation and systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/grsb.s2764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The goldfish SG2NA gene encodes two alpha-type regulatory subunits for PP-2A and displays distinct developmental expression pattern.
SG2NA is a member of the striatin protein family. In human and mouse, the SG2NA gene encodes two major protein isoforms: SG2NA alpha and SG2NA beta. The functions of these proteins, except for acting as the regulatory subunits for PP-2A, remain largely unknown. To explore the possible functions of SG2NA in lower vertebrates, we have isolated two SG2NA cDNAs from goldfish, Carassius auratus. Our results reveal that the first cDNA contains an ORF of 2118 bp encoding a deduced protein with 705 amino acids, and the second one 2148 bp coding for a deduced protein of 715 amino acids. Comparative analysis reveals that both isoforms belong to the alpha-type, and are named SG2NA alpha and SG2NA alpha(+). RT-PCR and western blot analysis reveal that the SG2NA gene is differentially expressed in 9 tissues examined. During goldfish development, while the SG2NA mRNAs remain relatively constant in the first 3 stages and then become decreased and fluctuated from gastrula to larval hatching, the SG2NA proteins are fluctuated, displaying a peak every 3 to 4 stages. Each later peak is higher than the earlier one and the protein expression level becomes maximal at hatching stage. Together, our results reveal that SG2NA may play an important role during goldfish development and also in homeostasis of most adult tissues.