{"title":"寻找面部特征的信号。","authors":"Thomas F Schilling, Pierre Le Pabic","doi":"10.1186/jbiol205","DOIUrl":null,"url":null,"abstract":"<p><p>Zebrafish are a powerful system for studying the early embryonic events that form the skull and face, as a model for human craniofacial birth defects such as cleft palate. Signaling pathways that pattern the pharyngeal arches (which contain skeletal precursors of the palate, as well as jaws and gills) are discussed in light of a recent paper in BMC Developmental Biology on requirements for Hedgehog signaling in craniofacial development.</p>","PeriodicalId":15075,"journal":{"name":"Journal of Biology","volume":"8 11","pages":"101"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/jbiol205","citationCount":"16","resultStr":"{\"title\":\"Fishing for the signals that pattern the face.\",\"authors\":\"Thomas F Schilling, Pierre Le Pabic\",\"doi\":\"10.1186/jbiol205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zebrafish are a powerful system for studying the early embryonic events that form the skull and face, as a model for human craniofacial birth defects such as cleft palate. Signaling pathways that pattern the pharyngeal arches (which contain skeletal precursors of the palate, as well as jaws and gills) are discussed in light of a recent paper in BMC Developmental Biology on requirements for Hedgehog signaling in craniofacial development.</p>\",\"PeriodicalId\":15075,\"journal\":{\"name\":\"Journal of Biology\",\"volume\":\"8 11\",\"pages\":\"101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/jbiol205\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/jbiol205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/jbiol205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/12/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Zebrafish are a powerful system for studying the early embryonic events that form the skull and face, as a model for human craniofacial birth defects such as cleft palate. Signaling pathways that pattern the pharyngeal arches (which contain skeletal precursors of the palate, as well as jaws and gills) are discussed in light of a recent paper in BMC Developmental Biology on requirements for Hedgehog signaling in craniofacial development.