{"title":"绘制原生生物“稀有生物圈”。","authors":"Scott C Dawson, Kari D Hagen","doi":"10.1186/jbiol201","DOIUrl":null,"url":null,"abstract":"<p><p>The use of cultivation-independent approaches to map microbial diversity, including recent work published in BMC Biology, has now shown that protists, like bacteria/archaea, are much more diverse than had been realized. Uncovering eukaryotic diversity may now be limited not by access to samples or cost but rather by the availability of full-length reference sequence data.</p>","PeriodicalId":15075,"journal":{"name":"Journal of Biology","volume":"8 12","pages":"105"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/jbiol201","citationCount":"33","resultStr":"{\"title\":\"Mapping the protistan 'rare biosphere'.\",\"authors\":\"Scott C Dawson, Kari D Hagen\",\"doi\":\"10.1186/jbiol201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of cultivation-independent approaches to map microbial diversity, including recent work published in BMC Biology, has now shown that protists, like bacteria/archaea, are much more diverse than had been realized. Uncovering eukaryotic diversity may now be limited not by access to samples or cost but rather by the availability of full-length reference sequence data.</p>\",\"PeriodicalId\":15075,\"journal\":{\"name\":\"Journal of Biology\",\"volume\":\"8 12\",\"pages\":\"105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/jbiol201\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/jbiol201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/jbiol201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of cultivation-independent approaches to map microbial diversity, including recent work published in BMC Biology, has now shown that protists, like bacteria/archaea, are much more diverse than had been realized. Uncovering eukaryotic diversity may now be limited not by access to samples or cost but rather by the availability of full-length reference sequence data.