ChaK1结合肽的构象偏好:分子动力学研究。

Jiajing Zhang, Christopher A King, Kevin Dalby, Pengyu Ren
{"title":"ChaK1结合肽的构象偏好:分子动力学研究。","authors":"Jiajing Zhang,&nbsp;Christopher A King,&nbsp;Kevin Dalby,&nbsp;Pengyu Ren","doi":"10.1186/1757-5036-3-2","DOIUrl":null,"url":null,"abstract":"<p><p> TRPM7/ChaK1 is a recently discovered atypical protein kinase that has been suggested to selectively phosphorylate the substrate residues located in alpha-helices. However, the actual structure of kinase-substrate complex has not been determined experimentally and the recognition mechanism remains unknown. In this work we explored possible kinase-substrate binding modes and the likelihood of an alpha-helix docking interaction, within a kinase active site, using molecular modeling. Specifically kinase ChaK1 and its two peptide substrates were examined; one was an 11-residue segment from the N-terminal domain of annexin-1, a putative endogenous substrate for ChaK1, and the other was an engineered 16-mer peptide substrate determined via peptide library screening. Simulated annealing (SA), replica-exchange molecular dynamics (REMD) and steered molecular dynamics (SMD) simulations were performed on the two peptide substrates and the ChaK1-substrate complex in solution. The simulations indicate that the two substrate peptides are unlikely to bind and react with the ChaK1 kinase in a stable alpha-helical conformation overall. The key structural elements, sequence motifs, and amino acid residues in the ChaK1 and their possible functions involved in the substrate recognition are discussed.PACS Codes: 87.15.A-</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"3 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-3-2","citationCount":"2","resultStr":"{\"title\":\"Conformational preference of ChaK1 binding peptides: a molecular dynamics study.\",\"authors\":\"Jiajing Zhang,&nbsp;Christopher A King,&nbsp;Kevin Dalby,&nbsp;Pengyu Ren\",\"doi\":\"10.1186/1757-5036-3-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> TRPM7/ChaK1 is a recently discovered atypical protein kinase that has been suggested to selectively phosphorylate the substrate residues located in alpha-helices. However, the actual structure of kinase-substrate complex has not been determined experimentally and the recognition mechanism remains unknown. In this work we explored possible kinase-substrate binding modes and the likelihood of an alpha-helix docking interaction, within a kinase active site, using molecular modeling. Specifically kinase ChaK1 and its two peptide substrates were examined; one was an 11-residue segment from the N-terminal domain of annexin-1, a putative endogenous substrate for ChaK1, and the other was an engineered 16-mer peptide substrate determined via peptide library screening. Simulated annealing (SA), replica-exchange molecular dynamics (REMD) and steered molecular dynamics (SMD) simulations were performed on the two peptide substrates and the ChaK1-substrate complex in solution. The simulations indicate that the two substrate peptides are unlikely to bind and react with the ChaK1 kinase in a stable alpha-helical conformation overall. The key structural elements, sequence motifs, and amino acid residues in the ChaK1 and their possible functions involved in the substrate recognition are discussed.PACS Codes: 87.15.A-</p>\",\"PeriodicalId\":88297,\"journal\":{\"name\":\"PMC biophysics\",\"volume\":\"3 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1757-5036-3-2\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PMC biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1757-5036-3-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PMC biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1757-5036-3-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

TRPM7/ChaK1是最近发现的一种非典型蛋白激酶,被认为可以选择性地磷酸化位于α螺旋上的底物残基。然而,激酶-底物复合物的实际结构尚未通过实验确定,其识别机制仍不清楚。在这项工作中,我们探索了可能的激酶-底物结合模式和α -螺旋对接相互作用的可能性,在激酶活性位点内,使用分子模型。具体来说,检测了激酶ChaK1及其两个肽底物;其中一个是来自annexin-1 n末端的11个残基片段,这是ChaK1的推测内源性底物,另一个是通过肽库筛选确定的工程16聚肽底物。对两种肽底物和chak1 -底物复合物在溶液中进行了模拟退火(SA)、复制交换分子动力学(REMD)和定向分子动力学(SMD)模拟。模拟表明,这两种底物肽不太可能以稳定的α -螺旋构象与ChaK1激酶结合和反应。讨论了ChaK1的关键结构元件、序列基序和氨基酸残基及其可能参与底物识别的功能。PACS代码:87.15.A-
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conformational preference of ChaK1 binding peptides: a molecular dynamics study.

TRPM7/ChaK1 is a recently discovered atypical protein kinase that has been suggested to selectively phosphorylate the substrate residues located in alpha-helices. However, the actual structure of kinase-substrate complex has not been determined experimentally and the recognition mechanism remains unknown. In this work we explored possible kinase-substrate binding modes and the likelihood of an alpha-helix docking interaction, within a kinase active site, using molecular modeling. Specifically kinase ChaK1 and its two peptide substrates were examined; one was an 11-residue segment from the N-terminal domain of annexin-1, a putative endogenous substrate for ChaK1, and the other was an engineered 16-mer peptide substrate determined via peptide library screening. Simulated annealing (SA), replica-exchange molecular dynamics (REMD) and steered molecular dynamics (SMD) simulations were performed on the two peptide substrates and the ChaK1-substrate complex in solution. The simulations indicate that the two substrate peptides are unlikely to bind and react with the ChaK1 kinase in a stable alpha-helical conformation overall. The key structural elements, sequence motifs, and amino acid residues in the ChaK1 and their possible functions involved in the substrate recognition are discussed.PACS Codes: 87.15.A-

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of steady-state fluorescence emission and anisotropy of merocyanine 540 to distinguish crystalline, gel, ripple, and liquid crystalline phases in dipalmitoylphosphatidylcholine bilayers. Tubulohelical membrane arrays: From the initial observation to the elucidation of nanophysical properties and cellular function. Bistability in the actin cortex. Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy. Combined molecular dynamics and continuum solvent studies of the pre-pore Cry4Aa trimer suggest its stability in solution and how it may form pore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1