人体心血管系统的数学建模和电子模拟等效。

Mona Abdolrazaghi, Mahdi Navidbakhsh, Kamran Hassani
{"title":"人体心血管系统的数学建模和电子模拟等效。","authors":"Mona Abdolrazaghi,&nbsp;Mahdi Navidbakhsh,&nbsp;Kamran Hassani","doi":"10.1007/s10558-010-9093-0","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to develop a model of the cardiovascular system capable of simulating the normal operation of the systemic and pulmonary circulation, starts from aorta, and follows by upper and lower extremities vessels, finally ends with pulmonary veins. The model consists of a closed loop lumped elements with 43 compartments representing the cardiovascular system. The model parameters have been extracted from the literature. Using MATLAB software, the mathematical model has been simulated for the cardiovascular system. Each compartment includes a Resistor-Inductor-Capacitor (RLC) segment. The normal cardiovascular operation is characterised by the pressure-volume curves in different parts of the system. Model verification is performed by comparing the simulation results with the clinical observation reported in the literature. The described model is a useful tool in studying the physiology of cardiovascular system, and the related diseases. Also, it could be a great tool to investigate the effects of the pathologies of the cardiovascular system.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 2","pages":"45-51"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9093-0","citationCount":"39","resultStr":"{\"title\":\"Mathematical modelling and electrical analog equivalent of the human cardiovascular system.\",\"authors\":\"Mona Abdolrazaghi,&nbsp;Mahdi Navidbakhsh,&nbsp;Kamran Hassani\",\"doi\":\"10.1007/s10558-010-9093-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study is to develop a model of the cardiovascular system capable of simulating the normal operation of the systemic and pulmonary circulation, starts from aorta, and follows by upper and lower extremities vessels, finally ends with pulmonary veins. The model consists of a closed loop lumped elements with 43 compartments representing the cardiovascular system. The model parameters have been extracted from the literature. Using MATLAB software, the mathematical model has been simulated for the cardiovascular system. Each compartment includes a Resistor-Inductor-Capacitor (RLC) segment. The normal cardiovascular operation is characterised by the pressure-volume curves in different parts of the system. Model verification is performed by comparing the simulation results with the clinical observation reported in the literature. The described model is a useful tool in studying the physiology of cardiovascular system, and the related diseases. Also, it could be a great tool to investigate the effects of the pathologies of the cardiovascular system.</p>\",\"PeriodicalId\":55275,\"journal\":{\"name\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"volume\":\"10 2\",\"pages\":\"45-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10558-010-9093-0\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10558-010-9093-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-010-9093-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本研究的目的是建立一个能够模拟全身循环和肺循环正常运行的心血管系统模型,从主动脉开始,然后是上肢和下肢血管,最后是肺静脉。该模型由一个闭环集总元件组成,43个室代表心血管系统。模型参数已从文献中提取。利用MATLAB软件对心血管系统的数学模型进行了仿真。每个隔间包括一个电阻-电感-电容器(RLC)段。正常的心血管工作是以系统不同部位的压力-容积曲线为特征的。通过将模拟结果与文献报道的临床观察结果进行比较,对模型进行验证。该模型是研究心血管系统生理及相关疾病的有效工具。此外,它可能是一个伟大的工具来调查心血管系统的病理影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical modelling and electrical analog equivalent of the human cardiovascular system.

The objective of this study is to develop a model of the cardiovascular system capable of simulating the normal operation of the systemic and pulmonary circulation, starts from aorta, and follows by upper and lower extremities vessels, finally ends with pulmonary veins. The model consists of a closed loop lumped elements with 43 compartments representing the cardiovascular system. The model parameters have been extracted from the literature. Using MATLAB software, the mathematical model has been simulated for the cardiovascular system. Each compartment includes a Resistor-Inductor-Capacitor (RLC) segment. The normal cardiovascular operation is characterised by the pressure-volume curves in different parts of the system. Model verification is performed by comparing the simulation results with the clinical observation reported in the literature. The described model is a useful tool in studying the physiology of cardiovascular system, and the related diseases. Also, it could be a great tool to investigate the effects of the pathologies of the cardiovascular system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Bioprinting of a Tissue Engineered Human Heart Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 2: From Fabrication to Optimization Square Root Design for Natural Frequency Module of Dynamic ECG Features—a Preliminary Study Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 1: From Conception to Materials Selection Biopolymers as Potential Carrier for Effervescent Reaction Based Drug Delivery System in Gastrointestinal Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1