Li-Ting Huang, Atif Ali, Hua-Hua Wang, Fan Cheng, Hai-Yang Liu
{"title":"钴催化剂对烯烃的催化氧化","authors":"Li-Ting Huang, Atif Ali, Hua-Hua Wang, Fan Cheng, Hai-Yang Liu","doi":"10.1016/j.molcata.2016.11.019","DOIUrl":null,"url":null,"abstract":"<div><p>Four cobalt (III) corroles bearing different number of pentafluorophenyl and phenyl groups were synthesized and characterized by elemental analysis, HR-MS, UV–vis, NMR, XPS as well as cyclic voltammetry. The first investigation of cobalt corrole catalyzed oxidation of alkene was conducted by using styrene as substrate. The best yield was obtained in acetonitrile solvent in the air with TBHP oxidant (96% yield based on oxidant, up to 96 TON). Benzaldehyde was detected as the main product by using PhI(OAc)<sub>2</sub>, TBHP, KHSO<sub>5</sub>, PhIO as oxidants. In contrast, styrene oxide was found to be the major product when using <em>m</em>-CPBA oxidant. Nearly no products could be found by using H<sub>2</sub>O<sub>2</sub> oxidant. Possible catalytic oxidation pathway was also discussed based on the obsewrvations of UV–vis changes of the ctatalytic system in the absence of substrate and in-situ HR-MS.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 213-222"},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.019","citationCount":"19","resultStr":"{\"title\":\"Catalytic oxidation of alkene by cobalt corroles\",\"authors\":\"Li-Ting Huang, Atif Ali, Hua-Hua Wang, Fan Cheng, Hai-Yang Liu\",\"doi\":\"10.1016/j.molcata.2016.11.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Four cobalt (III) corroles bearing different number of pentafluorophenyl and phenyl groups were synthesized and characterized by elemental analysis, HR-MS, UV–vis, NMR, XPS as well as cyclic voltammetry. The first investigation of cobalt corrole catalyzed oxidation of alkene was conducted by using styrene as substrate. The best yield was obtained in acetonitrile solvent in the air with TBHP oxidant (96% yield based on oxidant, up to 96 TON). Benzaldehyde was detected as the main product by using PhI(OAc)<sub>2</sub>, TBHP, KHSO<sub>5</sub>, PhIO as oxidants. In contrast, styrene oxide was found to be the major product when using <em>m</em>-CPBA oxidant. Nearly no products could be found by using H<sub>2</sub>O<sub>2</sub> oxidant. Possible catalytic oxidation pathway was also discussed based on the obsewrvations of UV–vis changes of the ctatalytic system in the absence of substrate and in-situ HR-MS.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":\"426 \",\"pages\":\"Pages 213-222\"},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.019\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916304952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Four cobalt (III) corroles bearing different number of pentafluorophenyl and phenyl groups were synthesized and characterized by elemental analysis, HR-MS, UV–vis, NMR, XPS as well as cyclic voltammetry. The first investigation of cobalt corrole catalyzed oxidation of alkene was conducted by using styrene as substrate. The best yield was obtained in acetonitrile solvent in the air with TBHP oxidant (96% yield based on oxidant, up to 96 TON). Benzaldehyde was detected as the main product by using PhI(OAc)2, TBHP, KHSO5, PhIO as oxidants. In contrast, styrene oxide was found to be the major product when using m-CPBA oxidant. Nearly no products could be found by using H2O2 oxidant. Possible catalytic oxidation pathway was also discussed based on the obsewrvations of UV–vis changes of the ctatalytic system in the absence of substrate and in-situ HR-MS.
期刊介绍:
The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.