钴催化剂对烯烃的催化氧化

Li-Ting Huang, Atif Ali, Hua-Hua Wang, Fan Cheng, Hai-Yang Liu
{"title":"钴催化剂对烯烃的催化氧化","authors":"Li-Ting Huang,&nbsp;Atif Ali,&nbsp;Hua-Hua Wang,&nbsp;Fan Cheng,&nbsp;Hai-Yang Liu","doi":"10.1016/j.molcata.2016.11.019","DOIUrl":null,"url":null,"abstract":"<div><p>Four cobalt (III) corroles bearing different number of pentafluorophenyl and phenyl groups were synthesized and characterized by elemental analysis, HR-MS, UV–vis, NMR, XPS as well as cyclic voltammetry. The first investigation of cobalt corrole catalyzed oxidation of alkene was conducted by using styrene as substrate. The best yield was obtained in acetonitrile solvent in the air with TBHP oxidant (96% yield based on oxidant, up to 96 TON). Benzaldehyde was detected as the main product by using PhI(OAc)<sub>2</sub>, TBHP, KHSO<sub>5</sub>, PhIO as oxidants. In contrast, styrene oxide was found to be the major product when using <em>m</em>-CPBA oxidant. Nearly no products could be found by using H<sub>2</sub>O<sub>2</sub> oxidant. Possible catalytic oxidation pathway was also discussed based on the obsewrvations of UV–vis changes of the ctatalytic system in the absence of substrate and in-situ HR-MS.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":null,"pages":null},"PeriodicalIF":5.0620,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.019","citationCount":"19","resultStr":"{\"title\":\"Catalytic oxidation of alkene by cobalt corroles\",\"authors\":\"Li-Ting Huang,&nbsp;Atif Ali,&nbsp;Hua-Hua Wang,&nbsp;Fan Cheng,&nbsp;Hai-Yang Liu\",\"doi\":\"10.1016/j.molcata.2016.11.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Four cobalt (III) corroles bearing different number of pentafluorophenyl and phenyl groups were synthesized and characterized by elemental analysis, HR-MS, UV–vis, NMR, XPS as well as cyclic voltammetry. The first investigation of cobalt corrole catalyzed oxidation of alkene was conducted by using styrene as substrate. The best yield was obtained in acetonitrile solvent in the air with TBHP oxidant (96% yield based on oxidant, up to 96 TON). Benzaldehyde was detected as the main product by using PhI(OAc)<sub>2</sub>, TBHP, KHSO<sub>5</sub>, PhIO as oxidants. In contrast, styrene oxide was found to be the major product when using <em>m</em>-CPBA oxidant. Nearly no products could be found by using H<sub>2</sub>O<sub>2</sub> oxidant. Possible catalytic oxidation pathway was also discussed based on the obsewrvations of UV–vis changes of the ctatalytic system in the absence of substrate and in-situ HR-MS.</p></div>\",\"PeriodicalId\":370,\"journal\":{\"name\":\"Journal of Molecular Catalysis A: Chemical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0620,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.019\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis A: Chemical\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381116916304952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis A: Chemical","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381116916304952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

合成了四种含不同数目的五氟苯基和苯基的钴(III)配合物,并用元素分析、质谱、紫外可见、核磁共振、XPS和循环伏安法对其进行了表征。以苯乙烯为底物,首次研究了钴钴催化烯烃氧化反应。以三必和二必拓为氧化剂,在空气中乙腈溶剂中得率最高(96%,达96吨)。以PhI(OAc)2、thbhp、KHSO5、PhIO为氧化剂,主要产物为苯甲醛。使用m-CPBA氧化剂时,主要产物为氧化苯乙烯。使用H2O2氧化剂几乎没有发现任何产物。在无底物和原位HR-MS的情况下,通过观察催化体系的UV-vis变化,讨论了可能的催化氧化途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic oxidation of alkene by cobalt corroles

Four cobalt (III) corroles bearing different number of pentafluorophenyl and phenyl groups were synthesized and characterized by elemental analysis, HR-MS, UV–vis, NMR, XPS as well as cyclic voltammetry. The first investigation of cobalt corrole catalyzed oxidation of alkene was conducted by using styrene as substrate. The best yield was obtained in acetonitrile solvent in the air with TBHP oxidant (96% yield based on oxidant, up to 96 TON). Benzaldehyde was detected as the main product by using PhI(OAc)2, TBHP, KHSO5, PhIO as oxidants. In contrast, styrene oxide was found to be the major product when using m-CPBA oxidant. Nearly no products could be found by using H2O2 oxidant. Possible catalytic oxidation pathway was also discussed based on the obsewrvations of UV–vis changes of the ctatalytic system in the absence of substrate and in-situ HR-MS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2.8 months
期刊介绍: The Journal of Molecular Catalysis A: Chemical publishes original, rigorous, and scholarly full papers that examine the molecular and atomic aspects of catalytic activation and reaction mechanisms in homogeneous catalysis, heterogeneous catalysis (including supported organometallic catalysis), and computational catalysis.
期刊最新文献
Study on Regeneration of Commercial V2O5-WO3/TiO2 Catalyst for Arsenic Poisoning Recent Progress in Computer-aided Design and Engineering of Glycosidases Research on the Influence of Calcined Titanium Dioxide to the Newly-Produced Selective Catalytic Reduction Catalyst and the Mechanism Catalytic Performances of Mo/HZSM-5 Zeolites in Methane and Methanol Co-aromatization after Modification by Tetrapropylammonium hydroxide Impacts of H2O and CO2 on NOx Storage-Reduction Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1