{"title":"脑死亡患者与脊髓损伤患者失禁时骶排尿中枢α、γ运动神经元与肌纺锤体传入神经放电的相位变化","authors":"G Schalow","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>1. Single-nerve fibre action potentials (APs) were recorded with 2 pairs of wire electrodes from lower sacral nerve roots during surgery in patients with spinal cord injury and in a brain-dead human. Conduction velocity distribution histograms were constructed for afferent and efferent fibres, nerve fibre groups were identified and simultaneous impulse patterns of alpha and gamma-motoneurons and secondary muscle spindle afferents (SP2) were constructed. Temporal relations between afferent and efferent APs were analyzed by interspike interval (II) and phase relation changes to explore the coordinated self-organization of somatic and parasympathetic neuronal networks in the sacral micturition centre during continence functions under physiologic (brain-dead) and pathophysiologic conditions (spinal cord injury). 2. In a paraplegic with hyperreflexia of the bladder, urinary bladder stretch (S1) and tension receptor afferents (ST) fired already when the bladder was empty, and showed a several times higher bladder afferent activity increase upon retrograde bladder filling than observed in the brain-dead individual. Two alpha2-motoneurons (FR) innervating the external bladder sphincter were already oscillatory firing to generate high activity levels when the bladder was empty. They showed activity levels with no bladder filling, comparable to those measured at a bladder filling of 600 ml in the brain-dead individual. A bladder storage volume of 600 ml was thus lost in the paraplegic, due to a too high bladder afferent input to the sacral micturition center, secondary to inflammation and hypertrophy of the detrusor. 3. In a brain-dead human, 2 phase relations existed per oscillation period of 160 ms between the APs of a sphincteric oscillatory firing alpha2-motoneuron, a dynamic fusimotor and a secondary muscle spindle afferent fibre. Following stimulation of mainly somatic afferent fibres, the phase relations changed only little. 4. In a paraplegic with dyssynergia of the urinary bladder also 2 phase relations (less stable) existed per oscillation period of 110 ms in a functional unit between the APs of a sphincteric alpha-motoneuron, a fusimotor and a secondary spindle afferent fibre. The phase relations changed with time following stimulation of mainly somatic afferents. A second functional unit organized by phase related interactions was phase related to the first functional unit. 5. Following painful bladder catheter pulling, the parasympathetic division was transiently activated several times in the paraplegic. At times of activation of the parasympathetic division, 3 broad phase relations occurred within and between the two functional units, indicating that the parasympathetic division in the sacral micturition and defecation center channeled an additional input to the somatic oscillatory firing neuronal networks driving motoneurons which innervate the external bladder and/or anal sphincters. 6. It is conceivable that the mutual inhibitory action of detrusor and external bladder sphincter has the capacity to recover, if the functional neuronal organization of the sacral micturition center is improved in the direction of more stable phase relations between the firings of neurons and neuronal ensembles by natural coordinated afferent inputs from continence organs, supraspinal neurons, and functionally connected neuronal networks. For supraspinal control and improvement of neuronal organization some kinds of bulbo-spinal-bulbo pathways have to exist or to be reconstructed by regeneration. 7. It will be shown in a following article that the sacral micturition centre can be repaired after spinal cord injury by a functional reorganization and limited regeneration of the human spinal cord by administering coordination dynamics therapy.</p>","PeriodicalId":11591,"journal":{"name":"Electromyography and clinical neurophysiology","volume":"50 1","pages":"3-27"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.\",\"authors\":\"G Schalow\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1. Single-nerve fibre action potentials (APs) were recorded with 2 pairs of wire electrodes from lower sacral nerve roots during surgery in patients with spinal cord injury and in a brain-dead human. Conduction velocity distribution histograms were constructed for afferent and efferent fibres, nerve fibre groups were identified and simultaneous impulse patterns of alpha and gamma-motoneurons and secondary muscle spindle afferents (SP2) were constructed. Temporal relations between afferent and efferent APs were analyzed by interspike interval (II) and phase relation changes to explore the coordinated self-organization of somatic and parasympathetic neuronal networks in the sacral micturition centre during continence functions under physiologic (brain-dead) and pathophysiologic conditions (spinal cord injury). 2. In a paraplegic with hyperreflexia of the bladder, urinary bladder stretch (S1) and tension receptor afferents (ST) fired already when the bladder was empty, and showed a several times higher bladder afferent activity increase upon retrograde bladder filling than observed in the brain-dead individual. Two alpha2-motoneurons (FR) innervating the external bladder sphincter were already oscillatory firing to generate high activity levels when the bladder was empty. They showed activity levels with no bladder filling, comparable to those measured at a bladder filling of 600 ml in the brain-dead individual. A bladder storage volume of 600 ml was thus lost in the paraplegic, due to a too high bladder afferent input to the sacral micturition center, secondary to inflammation and hypertrophy of the detrusor. 3. In a brain-dead human, 2 phase relations existed per oscillation period of 160 ms between the APs of a sphincteric oscillatory firing alpha2-motoneuron, a dynamic fusimotor and a secondary muscle spindle afferent fibre. Following stimulation of mainly somatic afferent fibres, the phase relations changed only little. 4. In a paraplegic with dyssynergia of the urinary bladder also 2 phase relations (less stable) existed per oscillation period of 110 ms in a functional unit between the APs of a sphincteric alpha-motoneuron, a fusimotor and a secondary spindle afferent fibre. The phase relations changed with time following stimulation of mainly somatic afferents. A second functional unit organized by phase related interactions was phase related to the first functional unit. 5. Following painful bladder catheter pulling, the parasympathetic division was transiently activated several times in the paraplegic. At times of activation of the parasympathetic division, 3 broad phase relations occurred within and between the two functional units, indicating that the parasympathetic division in the sacral micturition and defecation center channeled an additional input to the somatic oscillatory firing neuronal networks driving motoneurons which innervate the external bladder and/or anal sphincters. 6. It is conceivable that the mutual inhibitory action of detrusor and external bladder sphincter has the capacity to recover, if the functional neuronal organization of the sacral micturition center is improved in the direction of more stable phase relations between the firings of neurons and neuronal ensembles by natural coordinated afferent inputs from continence organs, supraspinal neurons, and functionally connected neuronal networks. For supraspinal control and improvement of neuronal organization some kinds of bulbo-spinal-bulbo pathways have to exist or to be reconstructed by regeneration. 7. It will be shown in a following article that the sacral micturition centre can be repaired after spinal cord injury by a functional reorganization and limited regeneration of the human spinal cord by administering coordination dynamics therapy.</p>\",\"PeriodicalId\":11591,\"journal\":{\"name\":\"Electromyography and clinical neurophysiology\",\"volume\":\"50 1\",\"pages\":\"3-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromyography and clinical neurophysiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromyography and clinical neurophysiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.
1. Single-nerve fibre action potentials (APs) were recorded with 2 pairs of wire electrodes from lower sacral nerve roots during surgery in patients with spinal cord injury and in a brain-dead human. Conduction velocity distribution histograms were constructed for afferent and efferent fibres, nerve fibre groups were identified and simultaneous impulse patterns of alpha and gamma-motoneurons and secondary muscle spindle afferents (SP2) were constructed. Temporal relations between afferent and efferent APs were analyzed by interspike interval (II) and phase relation changes to explore the coordinated self-organization of somatic and parasympathetic neuronal networks in the sacral micturition centre during continence functions under physiologic (brain-dead) and pathophysiologic conditions (spinal cord injury). 2. In a paraplegic with hyperreflexia of the bladder, urinary bladder stretch (S1) and tension receptor afferents (ST) fired already when the bladder was empty, and showed a several times higher bladder afferent activity increase upon retrograde bladder filling than observed in the brain-dead individual. Two alpha2-motoneurons (FR) innervating the external bladder sphincter were already oscillatory firing to generate high activity levels when the bladder was empty. They showed activity levels with no bladder filling, comparable to those measured at a bladder filling of 600 ml in the brain-dead individual. A bladder storage volume of 600 ml was thus lost in the paraplegic, due to a too high bladder afferent input to the sacral micturition center, secondary to inflammation and hypertrophy of the detrusor. 3. In a brain-dead human, 2 phase relations existed per oscillation period of 160 ms between the APs of a sphincteric oscillatory firing alpha2-motoneuron, a dynamic fusimotor and a secondary muscle spindle afferent fibre. Following stimulation of mainly somatic afferent fibres, the phase relations changed only little. 4. In a paraplegic with dyssynergia of the urinary bladder also 2 phase relations (less stable) existed per oscillation period of 110 ms in a functional unit between the APs of a sphincteric alpha-motoneuron, a fusimotor and a secondary spindle afferent fibre. The phase relations changed with time following stimulation of mainly somatic afferents. A second functional unit organized by phase related interactions was phase related to the first functional unit. 5. Following painful bladder catheter pulling, the parasympathetic division was transiently activated several times in the paraplegic. At times of activation of the parasympathetic division, 3 broad phase relations occurred within and between the two functional units, indicating that the parasympathetic division in the sacral micturition and defecation center channeled an additional input to the somatic oscillatory firing neuronal networks driving motoneurons which innervate the external bladder and/or anal sphincters. 6. It is conceivable that the mutual inhibitory action of detrusor and external bladder sphincter has the capacity to recover, if the functional neuronal organization of the sacral micturition center is improved in the direction of more stable phase relations between the firings of neurons and neuronal ensembles by natural coordinated afferent inputs from continence organs, supraspinal neurons, and functionally connected neuronal networks. For supraspinal control and improvement of neuronal organization some kinds of bulbo-spinal-bulbo pathways have to exist or to be reconstructed by regeneration. 7. It will be shown in a following article that the sacral micturition centre can be repaired after spinal cord injury by a functional reorganization and limited regeneration of the human spinal cord by administering coordination dynamics therapy.