进化如何引导复杂性

Hfsp Journal Pub Date : 2009-10-01 Epub Date: 2009-10-19 DOI:10.2976/1.3233712
Larry S Yaeger
{"title":"进化如何引导复杂性","authors":"Larry S Yaeger","doi":"10.2976/1.3233712","DOIUrl":null,"url":null,"abstract":"<p><p>Long-standing debates about the role of natural selection in the growth of biological complexity over geological time scales are difficult to resolve from the paleobiological record. Using an evolutionary model-a computational ecosystem subjected to natural selection-we investigate evolutionary trends in an information-theoretic measure of the complexity of the neural dynamics of artificial agents inhabiting the model. Our results suggest that evolution always guides complexity change, just not in a single direction. We also demonstrate that neural complexity correlates well with behavioral adaptation but only when complexity increases are achieved through natural selection (as opposed to increases generated randomly or optimized via a genetic algorithm). We conclude with a suggested research direction that might be able to use the artificial neural data generated in these experiments to determine which aspects of network structure give rise to evolutionarily meaningful neural complexity.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"3 5","pages":"328-39"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801533/pdf/HJFOA5-000003-000328_1.pdf","citationCount":"0","resultStr":"{\"title\":\"How evolution guides complexity.\",\"authors\":\"Larry S Yaeger\",\"doi\":\"10.2976/1.3233712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-standing debates about the role of natural selection in the growth of biological complexity over geological time scales are difficult to resolve from the paleobiological record. Using an evolutionary model-a computational ecosystem subjected to natural selection-we investigate evolutionary trends in an information-theoretic measure of the complexity of the neural dynamics of artificial agents inhabiting the model. Our results suggest that evolution always guides complexity change, just not in a single direction. We also demonstrate that neural complexity correlates well with behavioral adaptation but only when complexity increases are achieved through natural selection (as opposed to increases generated randomly or optimized via a genetic algorithm). We conclude with a suggested research direction that might be able to use the artificial neural data generated in these experiments to determine which aspects of network structure give rise to evolutionarily meaningful neural complexity.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"3 5\",\"pages\":\"328-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801533/pdf/HJFOA5-000003-000328_1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.3233712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/10/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.3233712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/10/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于自然选择在地质年代生物复杂性增长中所起作用的长期争论,很难从古生物学记录中找到答案。我们利用一个进化模型--一个接受自然选择的计算生态系统--研究了居住在该模型中的人工代理神经动力学复杂性的信息论测量的进化趋势。我们的研究结果表明,进化始终引导着复杂性的变化,只是变化的方向并不单一。我们还证明,神经复杂性与行为适应性有很好的相关性,但只有当复杂性的增加是通过自然选择实现的(而不是随机产生或通过遗传算法优化的增加)。最后,我们提出了一个研究方向,或许可以利用这些实验所产生的人工神经数据来确定网络结构的哪些方面会产生具有进化意义的神经复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How evolution guides complexity.

Long-standing debates about the role of natural selection in the growth of biological complexity over geological time scales are difficult to resolve from the paleobiological record. Using an evolutionary model-a computational ecosystem subjected to natural selection-we investigate evolutionary trends in an information-theoretic measure of the complexity of the neural dynamics of artificial agents inhabiting the model. Our results suggest that evolution always guides complexity change, just not in a single direction. We also demonstrate that neural complexity correlates well with behavioral adaptation but only when complexity increases are achieved through natural selection (as opposed to increases generated randomly or optimized via a genetic algorithm). We conclude with a suggested research direction that might be able to use the artificial neural data generated in these experiments to determine which aspects of network structure give rise to evolutionarily meaningful neural complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hfsp Journal
Hfsp Journal 综合性期刊-综合性期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Frontiers in life science. Inherited adaptation of genome-rewired cells in response to a challenging environment. Network reconstruction reveals new links between aging and calorie restriction in yeast. Molecular motors as an auto-oscillator. Robustness versus evolvability: a paradigm revisited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1