{"title":"肽核酸序列选择性靶向双链DNA。","authors":"Peter E Nielsen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence-selective gene targeting constitutes an attractive drug-discovery approach for genetic therapy, with the aim of reducing or enhancing the activity of specific genes at the transcriptional level, or as part of a methodology for targeted gene repair. The pseudopeptide DNA mimic peptide nucleic acid (PNA) can recognize duplex DNA with high sequence specificity and affinity in triplex, duplex and double-duplex invasive modes or non-invasive triplex modes. Novel PNA modification has improved the affinity for DNA recognition via duplex invasion, double-duplex invasion and triplex recognition considerably. Such modifications have also resulted in new approaches to targeted gene repair and sequence-selective double-strand cleavage of genomic DNA.</p>","PeriodicalId":50605,"journal":{"name":"Current Opinion in Molecular Therapeutics","volume":"12 2","pages":"184-91"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence-selective targeting of duplex DNA by peptide nucleic acids.\",\"authors\":\"Peter E Nielsen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequence-selective gene targeting constitutes an attractive drug-discovery approach for genetic therapy, with the aim of reducing or enhancing the activity of specific genes at the transcriptional level, or as part of a methodology for targeted gene repair. The pseudopeptide DNA mimic peptide nucleic acid (PNA) can recognize duplex DNA with high sequence specificity and affinity in triplex, duplex and double-duplex invasive modes or non-invasive triplex modes. Novel PNA modification has improved the affinity for DNA recognition via duplex invasion, double-duplex invasion and triplex recognition considerably. Such modifications have also resulted in new approaches to targeted gene repair and sequence-selective double-strand cleavage of genomic DNA.</p>\",\"PeriodicalId\":50605,\"journal\":{\"name\":\"Current Opinion in Molecular Therapeutics\",\"volume\":\"12 2\",\"pages\":\"184-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Molecular Therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Molecular Therapeutics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sequence-selective targeting of duplex DNA by peptide nucleic acids.
Sequence-selective gene targeting constitutes an attractive drug-discovery approach for genetic therapy, with the aim of reducing or enhancing the activity of specific genes at the transcriptional level, or as part of a methodology for targeted gene repair. The pseudopeptide DNA mimic peptide nucleic acid (PNA) can recognize duplex DNA with high sequence specificity and affinity in triplex, duplex and double-duplex invasive modes or non-invasive triplex modes. Novel PNA modification has improved the affinity for DNA recognition via duplex invasion, double-duplex invasion and triplex recognition considerably. Such modifications have also resulted in new approaches to targeted gene repair and sequence-selective double-strand cleavage of genomic DNA.