Merav Bar, Derek Stirewalt, Era Pogosova-Agadjanyan, Vitas Wagner, Ted Gooley, Nissa Abbasi, Ravi Bhatia, H Joachim Deeg, Jerald Radich
{"title":"骨髓发育不良的基因表达模式强调了细胞凋亡和分化在疾病发生和发展中的作用。","authors":"Merav Bar, Derek Stirewalt, Era Pogosova-Agadjanyan, Vitas Wagner, Ted Gooley, Nissa Abbasi, Ravi Bhatia, H Joachim Deeg, Jerald Radich","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The myelodysplastic syndromes (MDS) are clonal stem cell disorders, characterized by ineffective and dysplastic hematopoiesis. The genetic and epigenetic pathways that determine disease stage and progression are largely unknown. In the current study we used gene expression microarray methodology to examine the gene expression differences between normal hematopoietic cells and hematopoietic cells from patients with MDS at different disease stages, using both unselected and CD34+ selected cells. Significant differences between normal and MDS hematopoietic cells were observed for several genes and pathways. Several genes promoting or opposing apoptosis were dysregulated in MDS cases, most notably MCL1 and EPOR. Progression from RA to RAEB(T) was associated with increased expression of several histone genes. In addition, the RAR-RXR pathway, critical for maintaining a balance between self-renewal and differentiation of hematopoietic stem cells, was found to be deregulated in hematopoietic cells from patients with advanced MDS compared to patients with refractory anemia. These findings provide new insights into the understanding of the pathophysiology and progression of MDS, and may guide to new targets for therapy. Taken together with previous published data, the present results also underscore the considerable complexity of the regulation of gene expression in MDS.</p>","PeriodicalId":88783,"journal":{"name":"Translational oncogenomics","volume":"3 ","pages":"137-49"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gene expression patterns in myelodyplasia underline the role of apoptosis and differentiation in disease initiation and progression.\",\"authors\":\"Merav Bar, Derek Stirewalt, Era Pogosova-Agadjanyan, Vitas Wagner, Ted Gooley, Nissa Abbasi, Ravi Bhatia, H Joachim Deeg, Jerald Radich\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The myelodysplastic syndromes (MDS) are clonal stem cell disorders, characterized by ineffective and dysplastic hematopoiesis. The genetic and epigenetic pathways that determine disease stage and progression are largely unknown. In the current study we used gene expression microarray methodology to examine the gene expression differences between normal hematopoietic cells and hematopoietic cells from patients with MDS at different disease stages, using both unselected and CD34+ selected cells. Significant differences between normal and MDS hematopoietic cells were observed for several genes and pathways. Several genes promoting or opposing apoptosis were dysregulated in MDS cases, most notably MCL1 and EPOR. Progression from RA to RAEB(T) was associated with increased expression of several histone genes. In addition, the RAR-RXR pathway, critical for maintaining a balance between self-renewal and differentiation of hematopoietic stem cells, was found to be deregulated in hematopoietic cells from patients with advanced MDS compared to patients with refractory anemia. These findings provide new insights into the understanding of the pathophysiology and progression of MDS, and may guide to new targets for therapy. Taken together with previous published data, the present results also underscore the considerable complexity of the regulation of gene expression in MDS.</p>\",\"PeriodicalId\":88783,\"journal\":{\"name\":\"Translational oncogenomics\",\"volume\":\"3 \",\"pages\":\"137-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational oncogenomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2008/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational oncogenomics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/5/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Gene expression patterns in myelodyplasia underline the role of apoptosis and differentiation in disease initiation and progression.
The myelodysplastic syndromes (MDS) are clonal stem cell disorders, characterized by ineffective and dysplastic hematopoiesis. The genetic and epigenetic pathways that determine disease stage and progression are largely unknown. In the current study we used gene expression microarray methodology to examine the gene expression differences between normal hematopoietic cells and hematopoietic cells from patients with MDS at different disease stages, using both unselected and CD34+ selected cells. Significant differences between normal and MDS hematopoietic cells were observed for several genes and pathways. Several genes promoting or opposing apoptosis were dysregulated in MDS cases, most notably MCL1 and EPOR. Progression from RA to RAEB(T) was associated with increased expression of several histone genes. In addition, the RAR-RXR pathway, critical for maintaining a balance between self-renewal and differentiation of hematopoietic stem cells, was found to be deregulated in hematopoietic cells from patients with advanced MDS compared to patients with refractory anemia. These findings provide new insights into the understanding of the pathophysiology and progression of MDS, and may guide to new targets for therapy. Taken together with previous published data, the present results also underscore the considerable complexity of the regulation of gene expression in MDS.