多巴胺神经元的电生理特征:35年的更新。

Wei-Xing Shi
{"title":"多巴胺神经元的电生理特征:35年的更新。","authors":"Wei-Xing Shi","doi":"10.1007/978-3-211-92660-4_8","DOIUrl":null,"url":null,"abstract":"<p><p>This chapter consists of four sections. The first section provides a general description of the electrophysiological characteristics of dopamine (DA) neurons in both the substantia nigra and ventral tegmental area. Emphasis is placed on the differences between DA and neighboring non-DA neurons. The second section discusses the ionic mechanisms underlying the generation of action potential in DA cells. Evidence is provided to suggest that these mechanisms differ not only between DA and non-DA neurons but also between DA cells located in different areas, with different projection sites and at different developmental stages. Some of the differences may play a critical role in the vulnerability of a DA neuron to cell death. The third section describes the firing patterns of DA cells. Data are presented to show that the current \"80/160 ms\" criteria for burst identification need to be revised and that the burst firing, originally described by Bunney et al., can be described as slow oscillations in firing rate. In the ventral tegmental area, the slow oscillations are, at least partially, derived from the prefrontal cortex and part of prefrontal information is transferred to DA cells indirectly through inhibitory neurons. The final section focuses on the feedback regulation of DA cells. New evidence suggests that DA autoreceptors are coupled to multiple effectors, and both D1 and D2-like receptors are involved in long-loop feedback control of DA neurons. Because of the presence of multiple feedback and nonfeedback pathways, the effect of a drug on a DA neuron can be far more complex than an inhibition or excitation. A better understanding of the intrinsic properties of DA neurons and their regulation by afferent input will, in time, help to point to the way to more effective and safer treatments for disorders including schizophrenia, drug addiction, and Parkinson's disease.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 73","pages":"103-19"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-92660-4_8","citationCount":"26","resultStr":"{\"title\":\"Electrophysiological characteristics of dopamine neurons: a 35-year update.\",\"authors\":\"Wei-Xing Shi\",\"doi\":\"10.1007/978-3-211-92660-4_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This chapter consists of four sections. The first section provides a general description of the electrophysiological characteristics of dopamine (DA) neurons in both the substantia nigra and ventral tegmental area. Emphasis is placed on the differences between DA and neighboring non-DA neurons. The second section discusses the ionic mechanisms underlying the generation of action potential in DA cells. Evidence is provided to suggest that these mechanisms differ not only between DA and non-DA neurons but also between DA cells located in different areas, with different projection sites and at different developmental stages. Some of the differences may play a critical role in the vulnerability of a DA neuron to cell death. The third section describes the firing patterns of DA cells. Data are presented to show that the current \\\"80/160 ms\\\" criteria for burst identification need to be revised and that the burst firing, originally described by Bunney et al., can be described as slow oscillations in firing rate. In the ventral tegmental area, the slow oscillations are, at least partially, derived from the prefrontal cortex and part of prefrontal information is transferred to DA cells indirectly through inhibitory neurons. The final section focuses on the feedback regulation of DA cells. New evidence suggests that DA autoreceptors are coupled to multiple effectors, and both D1 and D2-like receptors are involved in long-loop feedback control of DA neurons. Because of the presence of multiple feedback and nonfeedback pathways, the effect of a drug on a DA neuron can be far more complex than an inhibition or excitation. A better understanding of the intrinsic properties of DA neurons and their regulation by afferent input will, in time, help to point to the way to more effective and safer treatments for disorders including schizophrenia, drug addiction, and Parkinson's disease.</p>\",\"PeriodicalId\":16395,\"journal\":{\"name\":\"Journal of Neural Transmission-supplement\",\"volume\":\" 73\",\"pages\":\"103-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-211-92660-4_8\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neural Transmission-supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-211-92660-4_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission-supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-211-92660-4_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本章由四个部分组成。第一部分提供了黑质和腹侧被盖区多巴胺(DA)神经元电生理特征的一般描述。重点放在DA和邻近的非DA神经元之间的差异。第二部分讨论了DA细胞中动作电位产生的离子机制。有证据表明,这些机制不仅在DA和非DA神经元之间存在差异,而且在位于不同区域、不同投射部位和不同发育阶段的DA细胞之间也存在差异。其中一些差异可能在DA神经元对细胞死亡的脆弱性中起关键作用。第三部分描述DA细胞的放电模式。数据显示,目前的“80/160 ms”突发识别标准需要修改,并且Bunney等人最初描述的突发发射可以被描述为发射速率的缓慢振荡。在腹侧被盖区,缓慢振荡至少部分来源于前额叶皮层,部分前额叶信息通过抑制性神经元间接传递给DA细胞。最后一节重点介绍DA细胞的反馈调控。新的证据表明,DA自受体与多种效应器偶联,D1和d2样受体都参与DA神经元的长环反馈控制。由于存在多种反馈和非反馈通路,药物对DA神经元的影响可能比抑制或兴奋复杂得多。更好地了解DA神经元的内在特性及其通过传入输入的调节,将有助于为精神分裂症、药物成瘾和帕金森病等疾病提供更有效、更安全的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrophysiological characteristics of dopamine neurons: a 35-year update.

This chapter consists of four sections. The first section provides a general description of the electrophysiological characteristics of dopamine (DA) neurons in both the substantia nigra and ventral tegmental area. Emphasis is placed on the differences between DA and neighboring non-DA neurons. The second section discusses the ionic mechanisms underlying the generation of action potential in DA cells. Evidence is provided to suggest that these mechanisms differ not only between DA and non-DA neurons but also between DA cells located in different areas, with different projection sites and at different developmental stages. Some of the differences may play a critical role in the vulnerability of a DA neuron to cell death. The third section describes the firing patterns of DA cells. Data are presented to show that the current "80/160 ms" criteria for burst identification need to be revised and that the burst firing, originally described by Bunney et al., can be described as slow oscillations in firing rate. In the ventral tegmental area, the slow oscillations are, at least partially, derived from the prefrontal cortex and part of prefrontal information is transferred to DA cells indirectly through inhibitory neurons. The final section focuses on the feedback regulation of DA cells. New evidence suggests that DA autoreceptors are coupled to multiple effectors, and both D1 and D2-like receptors are involved in long-loop feedback control of DA neurons. Because of the presence of multiple feedback and nonfeedback pathways, the effect of a drug on a DA neuron can be far more complex than an inhibition or excitation. A better understanding of the intrinsic properties of DA neurons and their regulation by afferent input will, in time, help to point to the way to more effective and safer treatments for disorders including schizophrenia, drug addiction, and Parkinson's disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuroimaging of Parkinson's disease Stem cells and cell replacement therapy for Parkinson's disease. Gene therapy for Parkinson's disease. Immunization as treatment for Parkinson's disease. A diet for dopaminergic neurons?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1