类风湿关节炎中的自体的士素和溶血磷脂。

Sylvain G Bourgoin, Chenqi Zhao
{"title":"类风湿关节炎中的自体的士素和溶血磷脂。","authors":"Sylvain G Bourgoin,&nbsp;Chenqi Zhao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Autotaxin (ATX) is an autocrine motility-stimulating factor and an extracellular enzyme that catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). Although ATX can also hydrolyze sphingosylphosphorylcholine (SPC) to sphingosine-1-phosphate (S1P), the major source of extracellular S1P originates from the intracellular phosphorylation of sphingosine by sphingosine kinases (SphKs). LPA and S1P are well-characterized bioactive lysophospholipid mediators, which have critical roles in multiple cellular processes through binding and activating GPCRs. These two lipids have been implicated in various physiological (eg, cell growth, differentiation, migration and survival) and pathological (eg, angiogenesis, metastasis and autoimmunity) processes. The roles of LPA and S1P in autoimmune diseases, including rheumatoid arthritis (RA), have recently emerged. This review discusses recent findings suggesting that the LPA- and S1P-induced cellular functions of synoviocytes from patients with RA may contribute to the pathophysiology of the disease by exacerbating the disease process. ATX and the lysophospholipid mediators are potential targets for the treatment of patients with RA.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 5","pages":"515-26"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autotaxin and lysophospholipids in rheumatoid arthritis.\",\"authors\":\"Sylvain G Bourgoin,&nbsp;Chenqi Zhao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autotaxin (ATX) is an autocrine motility-stimulating factor and an extracellular enzyme that catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). Although ATX can also hydrolyze sphingosylphosphorylcholine (SPC) to sphingosine-1-phosphate (S1P), the major source of extracellular S1P originates from the intracellular phosphorylation of sphingosine by sphingosine kinases (SphKs). LPA and S1P are well-characterized bioactive lysophospholipid mediators, which have critical roles in multiple cellular processes through binding and activating GPCRs. These two lipids have been implicated in various physiological (eg, cell growth, differentiation, migration and survival) and pathological (eg, angiogenesis, metastasis and autoimmunity) processes. The roles of LPA and S1P in autoimmune diseases, including rheumatoid arthritis (RA), have recently emerged. This review discusses recent findings suggesting that the LPA- and S1P-induced cellular functions of synoviocytes from patients with RA may contribute to the pathophysiology of the disease by exacerbating the disease process. ATX and the lysophospholipid mediators are potential targets for the treatment of patients with RA.</p>\",\"PeriodicalId\":10978,\"journal\":{\"name\":\"Current opinion in investigational drugs\",\"volume\":\"11 5\",\"pages\":\"515-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in investigational drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in investigational drugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Autotaxin (ATX)是一种自分泌运动刺激因子和细胞外酶,可催化溶血磷脂酰胆碱(LPC)水解为溶血磷脂酸(LPA)。虽然ATX也可以将鞘氨酰胆碱(SPC)水解为鞘氨醇-1-磷酸(S1P),但胞外S1P的主要来源是鞘氨醇激酶(SphKs)对鞘氨醇的胞内磷酸化。LPA和S1P是具有良好生物活性的溶血磷脂介质,它们通过结合和激活gpcr在多种细胞过程中发挥关键作用。这两种脂质参与多种生理(如细胞生长、分化、迁移和存活)和病理(如血管生成、转移和自身免疫)过程。LPA和S1P在自身免疫性疾病,包括类风湿关节炎(RA)中的作用最近被发现。这篇综述讨论了最近的研究结果,表明LPA-和s1p诱导的RA患者滑膜细胞的细胞功能可能通过加剧疾病过程来促进疾病的病理生理。ATX和溶血磷脂介质是治疗RA患者的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autotaxin and lysophospholipids in rheumatoid arthritis.

Autotaxin (ATX) is an autocrine motility-stimulating factor and an extracellular enzyme that catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). Although ATX can also hydrolyze sphingosylphosphorylcholine (SPC) to sphingosine-1-phosphate (S1P), the major source of extracellular S1P originates from the intracellular phosphorylation of sphingosine by sphingosine kinases (SphKs). LPA and S1P are well-characterized bioactive lysophospholipid mediators, which have critical roles in multiple cellular processes through binding and activating GPCRs. These two lipids have been implicated in various physiological (eg, cell growth, differentiation, migration and survival) and pathological (eg, angiogenesis, metastasis and autoimmunity) processes. The roles of LPA and S1P in autoimmune diseases, including rheumatoid arthritis (RA), have recently emerged. This review discusses recent findings suggesting that the LPA- and S1P-induced cellular functions of synoviocytes from patients with RA may contribute to the pathophysiology of the disease by exacerbating the disease process. ATX and the lysophospholipid mediators are potential targets for the treatment of patients with RA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Gene therapy for HCV/HBV-induced hepatocellular carcinoma. Anti-GITR antibodies--potential clinical applications for tumor immunotherapy. Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? Agents targeting the Hedgehog pathway for pancreatic cancer treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1