{"title":"甘蓝s15单倍型自交不亲和反应的变异。","authors":"Houria Hadj-Arab, Anne-Marie Chèvre, Thierry Gaude, Véronique Chable","doi":"10.1007/s00497-009-0119-y","DOIUrl":null,"url":null,"abstract":"<p><p>Self-incompatibility (SI) is thought to have played a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In most species, SI is under the control of a complex, multiallelic S-locus. The recognition system is associated with quantitative variations of the strength of the SI reaction; the origin of these variations is still not elucidated. To define the genetic regulations involved, we studied the variability of the SI response in homozygous S 15 S 15 plants in cauliflower. These plants were obtained from a self-progeny of a self-compatible (SC) plant heterozygous for S 15, which was generated after five selfing generations from one strongly self-incompatible initial plant. We found a continuous phenotypic variation for SI response in the offspring plants homozygous for the S 15 haplotype, from the strict SI reaction to self-compatibility, with a great proportion of the plants being partially self-compatible (PSC). Decrease in SI levels was also observed during the life of the flower. The number of pollen tubes passing through the stigma barrier was higher when counted 3 or 5 days after pollination than one day after pollination. Analysis of the expression of the two key genes regulating self-pollen recognition in cauliflower, the S-locus receptor kinase (SRK) and S-locus cysteine-rich (SCR/SP11) genes, revealed that self-compatibility or PSC was associated with decreased SRK or SCR/SP11 expression. Our work shows the particularly high level of phenotypic plasticity of the SI response associated with certain S-haplotypes in cauliflower.</p>","PeriodicalId":21770,"journal":{"name":"Sexual Plant Reproduction","volume":"23 2","pages":"141-51"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-009-0119-y","citationCount":"13","resultStr":"{\"title\":\"Variability of the self-incompatibility reaction in Brassica oleracea L. with S 15 haplotype.\",\"authors\":\"Houria Hadj-Arab, Anne-Marie Chèvre, Thierry Gaude, Véronique Chable\",\"doi\":\"10.1007/s00497-009-0119-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-incompatibility (SI) is thought to have played a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In most species, SI is under the control of a complex, multiallelic S-locus. The recognition system is associated with quantitative variations of the strength of the SI reaction; the origin of these variations is still not elucidated. To define the genetic regulations involved, we studied the variability of the SI response in homozygous S 15 S 15 plants in cauliflower. These plants were obtained from a self-progeny of a self-compatible (SC) plant heterozygous for S 15, which was generated after five selfing generations from one strongly self-incompatible initial plant. We found a continuous phenotypic variation for SI response in the offspring plants homozygous for the S 15 haplotype, from the strict SI reaction to self-compatibility, with a great proportion of the plants being partially self-compatible (PSC). Decrease in SI levels was also observed during the life of the flower. The number of pollen tubes passing through the stigma barrier was higher when counted 3 or 5 days after pollination than one day after pollination. Analysis of the expression of the two key genes regulating self-pollen recognition in cauliflower, the S-locus receptor kinase (SRK) and S-locus cysteine-rich (SCR/SP11) genes, revealed that self-compatibility or PSC was associated with decreased SRK or SCR/SP11 expression. Our work shows the particularly high level of phenotypic plasticity of the SI response associated with certain S-haplotypes in cauliflower.</p>\",\"PeriodicalId\":21770,\"journal\":{\"name\":\"Sexual Plant Reproduction\",\"volume\":\"23 2\",\"pages\":\"141-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00497-009-0119-y\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sexual Plant Reproduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-009-0119-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Plant Reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00497-009-0119-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/11/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
摘要
自交不亲和(SI)被认为在物种进化中发挥了关键作用,因为它通过识别和排斥自交花粉粒来促进物种的异交。在大多数物种中,SI是由一个复杂的多等位基因s位点控制的。识别系统与SI反应强度的定量变化有关;这些变异的起源仍未阐明。为了明确相关的遗传调控,我们研究了花椰菜S - 15 S - 15纯合子植株的SI响应变异性。这些植株来自s15的自交亲和(SC)植株杂合的自交后代,该自交亲和植株由一株强自交亲和的初始植株自交5代后产生。我们发现,在s15单倍型纯合的后代植株中,从严格的SI反应到自亲和,SI反应存在连续的表型变化,大部分植株是部分自亲和(PSC)。在花的整个生命周期中,SI水平也呈下降趋势。通过柱头屏障的花粉管数在授粉后第3天或第5天比授粉后第1天要多。通过对花椰菜中调节自花粉识别的两个关键基因——s -座受体激酶(SRK)和s -座富含半胱氨酸(SCR/SP11)基因的表达分析,发现自亲和性或PSC与SRK或SCR/SP11的表达降低有关。我们的研究表明,花椰菜中与某些s单倍型相关的SI反应具有特别高的表型可塑性。
Variability of the self-incompatibility reaction in Brassica oleracea L. with S 15 haplotype.
Self-incompatibility (SI) is thought to have played a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In most species, SI is under the control of a complex, multiallelic S-locus. The recognition system is associated with quantitative variations of the strength of the SI reaction; the origin of these variations is still not elucidated. To define the genetic regulations involved, we studied the variability of the SI response in homozygous S 15 S 15 plants in cauliflower. These plants were obtained from a self-progeny of a self-compatible (SC) plant heterozygous for S 15, which was generated after five selfing generations from one strongly self-incompatible initial plant. We found a continuous phenotypic variation for SI response in the offspring plants homozygous for the S 15 haplotype, from the strict SI reaction to self-compatibility, with a great proportion of the plants being partially self-compatible (PSC). Decrease in SI levels was also observed during the life of the flower. The number of pollen tubes passing through the stigma barrier was higher when counted 3 or 5 days after pollination than one day after pollination. Analysis of the expression of the two key genes regulating self-pollen recognition in cauliflower, the S-locus receptor kinase (SRK) and S-locus cysteine-rich (SCR/SP11) genes, revealed that self-compatibility or PSC was associated with decreased SRK or SCR/SP11 expression. Our work shows the particularly high level of phenotypic plasticity of the SI response associated with certain S-haplotypes in cauliflower.