{"title":"PRM-151(重组人血清淀粉样蛋白P/戊traxin 2)用于治疗纤维化。","authors":"Jeremy S Duffield, Mark L Lupher","doi":"10.1358/dnp.2010.23.5.1444206","DOIUrl":null,"url":null,"abstract":"<p><p>Serum amyloid P or pentraxin 2 (PTX2) is a highly phylogenetically conserved, naturally circulating plasma protein and a soluble pattern recognition receptor of the innate immune system. The unique binding activities of PTX2 suggest that it may localize specifically to sites of injury and function to aid in the removal of damaged tissue. The recent discovery of its ability to regulate certain monocyte differentiation states has identified PTX2 as a novel and potentially powerful antifibrotic agent. A fully recombinant form of the human PTX2 protein, designated PRM-151, has recently initiated human clinical trials. Here we review the molecular, cellular and structural biology of PRM-151/PTX2 in vitro and in several in vivo preclinical models of fibrotic disease that demonstrate its potential as a first-in-class natural modulator of fibrotic pathology with significant potential to treat a wide variety of human diseases.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 5","pages":"305-15"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis.\",\"authors\":\"Jeremy S Duffield, Mark L Lupher\",\"doi\":\"10.1358/dnp.2010.23.5.1444206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serum amyloid P or pentraxin 2 (PTX2) is a highly phylogenetically conserved, naturally circulating plasma protein and a soluble pattern recognition receptor of the innate immune system. The unique binding activities of PTX2 suggest that it may localize specifically to sites of injury and function to aid in the removal of damaged tissue. The recent discovery of its ability to regulate certain monocyte differentiation states has identified PTX2 as a novel and potentially powerful antifibrotic agent. A fully recombinant form of the human PTX2 protein, designated PRM-151, has recently initiated human clinical trials. Here we review the molecular, cellular and structural biology of PRM-151/PTX2 in vitro and in several in vivo preclinical models of fibrotic disease that demonstrate its potential as a first-in-class natural modulator of fibrotic pathology with significant potential to treat a wide variety of human diseases.</p>\",\"PeriodicalId\":11325,\"journal\":{\"name\":\"Drug news & perspectives\",\"volume\":\"23 5\",\"pages\":\"305-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug news & perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1358/dnp.2010.23.5.1444206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug news & perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1358/dnp.2010.23.5.1444206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis.
Serum amyloid P or pentraxin 2 (PTX2) is a highly phylogenetically conserved, naturally circulating plasma protein and a soluble pattern recognition receptor of the innate immune system. The unique binding activities of PTX2 suggest that it may localize specifically to sites of injury and function to aid in the removal of damaged tissue. The recent discovery of its ability to regulate certain monocyte differentiation states has identified PTX2 as a novel and potentially powerful antifibrotic agent. A fully recombinant form of the human PTX2 protein, designated PRM-151, has recently initiated human clinical trials. Here we review the molecular, cellular and structural biology of PRM-151/PTX2 in vitro and in several in vivo preclinical models of fibrotic disease that demonstrate its potential as a first-in-class natural modulator of fibrotic pathology with significant potential to treat a wide variety of human diseases.