Larry Pierce, Robert Miyaoka, Tom Lewellen, Adam Alessio, Paul Kinahan
{"title":"确定正电子发射计算机扫描仪的探测器位置。","authors":"Larry Pierce, Robert Miyaoka, Tom Lewellen, Adam Alessio, Paul Kinahan","doi":"10.1109/NSSMIC.2009.5401595","DOIUrl":null,"url":null,"abstract":"<p><p>We present an algorithm for accurate localization of block detectors in a positron emission tomography (PET) scanner. Accurate reconstruction of PET images requires precise knowledge of the physical position and orientation of the detectors. However, in some systems, block detector positioning and orientation can have relatively large tolerances, leading to implicit errors in the coincidence line-of-response (LOR) positioning. To compensate we utilize a rotating point source phantom where the rotational angle of the phantom is used to precisely determine the location of each scintillator crystal within a detector block. The aggregate block positions are then applied to the system model to determine the true location of each LOR. Images reconstructed with the more accurate LOR positioning demonstrate improved image fidelity.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"2976-2980"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895935/pdf/nihms207151.pdf","citationCount":"0","resultStr":"{\"title\":\"Determining Block Detector Positions for PET Scanners.\",\"authors\":\"Larry Pierce, Robert Miyaoka, Tom Lewellen, Adam Alessio, Paul Kinahan\",\"doi\":\"10.1109/NSSMIC.2009.5401595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present an algorithm for accurate localization of block detectors in a positron emission tomography (PET) scanner. Accurate reconstruction of PET images requires precise knowledge of the physical position and orientation of the detectors. However, in some systems, block detector positioning and orientation can have relatively large tolerances, leading to implicit errors in the coincidence line-of-response (LOR) positioning. To compensate we utilize a rotating point source phantom where the rotational angle of the phantom is used to precisely determine the location of each scintillator crystal within a detector block. The aggregate block positions are then applied to the system model to determine the true location of each LOR. Images reconstructed with the more accurate LOR positioning demonstrate improved image fidelity.</p>\",\"PeriodicalId\":73298,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"volume\":\"2009 \",\"pages\":\"2976-2980\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895935/pdf/nihms207151.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2009.5401595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2009.5401595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种在正电子发射断层扫描(PET)扫描仪中精确定位块探测器的算法。正电子发射断层扫描图像的精确重建需要精确了解探测器的物理位置和方向。然而,在某些系统中,块探测器的定位和定向可能存在相对较大的公差,从而导致重合响应线(LOR)定位的隐含误差。为了弥补这一缺陷,我们采用了旋转点源模型,利用模型的旋转角度来精确确定探测器块内每个闪烁晶体的位置。然后将探测器块的总位置应用于系统模型,以确定每个 LOR 的真实位置。利用更精确的 LOR 定位重建的图像显示出更高的图像保真度。
Determining Block Detector Positions for PET Scanners.
We present an algorithm for accurate localization of block detectors in a positron emission tomography (PET) scanner. Accurate reconstruction of PET images requires precise knowledge of the physical position and orientation of the detectors. However, in some systems, block detector positioning and orientation can have relatively large tolerances, leading to implicit errors in the coincidence line-of-response (LOR) positioning. To compensate we utilize a rotating point source phantom where the rotational angle of the phantom is used to precisely determine the location of each scintillator crystal within a detector block. The aggregate block positions are then applied to the system model to determine the true location of each LOR. Images reconstructed with the more accurate LOR positioning demonstrate improved image fidelity.