语法进化优化神经网络的替代交叉策略和选择技术。

Alison A Motsinger, Lance W Hahn, Scott M Dudek, Kelli K Ryckman, Marylyn D Ritchie
{"title":"语法进化优化神经网络的替代交叉策略和选择技术。","authors":"Alison A Motsinger, Lance W Hahn, Scott M Dudek, Kelli K Ryckman, Marylyn D Ritchie","doi":"10.1145/1143997.1144163","DOIUrl":null,"url":null,"abstract":"One of the most difficult challenges in human genetics is the identification and characterization of susceptibility genes for common complex human diseases. The presence of gene-gene and gene-environment interactions comprising the genetic architecture of these diseases presents a substantial statistical challenge. As the field pushes toward genome-wide association studies with hundreds of thousands, or even millions, of variables, the development of novel statistical and computational methods is a necessity. Previously, we introduced a grammatical evolution optimized NN (GENN) to improve upon the trial-and-error process of choosing an optimal architecture for a pure feed-forward back propagation neural network. GENN optimizes the inputs from a large pool of variables, the weights, and the connectivity of the network - including the number of hidden layers and the number of nodes in the hidden layer. Thus, the algorithm automatically generates optimal neural network architecture for a given data set. \n \nLike all evolutionary computing algorithms, grammatical evolution relies on evolutionary operators like crossover and selection to learn the best solution for a given dataset. We wanted to understand the effect of fitness proportionate versus ordinal selection schemes, and the effect of standard and novel crossover strategies on the performance of GENN.","PeriodicalId":88876,"journal":{"name":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","volume":"2006 ","pages":"947-948"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1143997.1144163","citationCount":"13","resultStr":"{\"title\":\"Alternative Cross-Over Strategies and Selection Techniques for Grammatical Evolution Optimized Neural Networks.\",\"authors\":\"Alison A Motsinger, Lance W Hahn, Scott M Dudek, Kelli K Ryckman, Marylyn D Ritchie\",\"doi\":\"10.1145/1143997.1144163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most difficult challenges in human genetics is the identification and characterization of susceptibility genes for common complex human diseases. The presence of gene-gene and gene-environment interactions comprising the genetic architecture of these diseases presents a substantial statistical challenge. As the field pushes toward genome-wide association studies with hundreds of thousands, or even millions, of variables, the development of novel statistical and computational methods is a necessity. Previously, we introduced a grammatical evolution optimized NN (GENN) to improve upon the trial-and-error process of choosing an optimal architecture for a pure feed-forward back propagation neural network. GENN optimizes the inputs from a large pool of variables, the weights, and the connectivity of the network - including the number of hidden layers and the number of nodes in the hidden layer. Thus, the algorithm automatically generates optimal neural network architecture for a given data set. \\n \\nLike all evolutionary computing algorithms, grammatical evolution relies on evolutionary operators like crossover and selection to learn the best solution for a given dataset. We wanted to understand the effect of fitness proportionate versus ordinal selection schemes, and the effect of standard and novel crossover strategies on the performance of GENN.\",\"PeriodicalId\":88876,\"journal\":{\"name\":\"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference\",\"volume\":\"2006 \",\"pages\":\"947-948\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/1143997.1144163\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143997.1144163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143997.1144163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alternative Cross-Over Strategies and Selection Techniques for Grammatical Evolution Optimized Neural Networks.
One of the most difficult challenges in human genetics is the identification and characterization of susceptibility genes for common complex human diseases. The presence of gene-gene and gene-environment interactions comprising the genetic architecture of these diseases presents a substantial statistical challenge. As the field pushes toward genome-wide association studies with hundreds of thousands, or even millions, of variables, the development of novel statistical and computational methods is a necessity. Previously, we introduced a grammatical evolution optimized NN (GENN) to improve upon the trial-and-error process of choosing an optimal architecture for a pure feed-forward back propagation neural network. GENN optimizes the inputs from a large pool of variables, the weights, and the connectivity of the network - including the number of hidden layers and the number of nodes in the hidden layer. Thus, the algorithm automatically generates optimal neural network architecture for a given data set. Like all evolutionary computing algorithms, grammatical evolution relies on evolutionary operators like crossover and selection to learn the best solution for a given dataset. We wanted to understand the effect of fitness proportionate versus ordinal selection schemes, and the effect of standard and novel crossover strategies on the performance of GENN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grammar-Based Vectorial Genetic Programming for Symbolic Regression Designing Multiple ANNs with Evolutionary Development: Activity Dependence Evolution of the Semiconductor Industry, and the Start of X Law Back to the Future—Revisiting OrdinalGP and Trustable Models After a Decade Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1