生物力学的可穿戴技术:电子纺织品还是微机械传感器?

Danilo De Rossi, Peter Veltink
{"title":"生物力学的可穿戴技术:电子纺织品还是微机械传感器?","authors":"Danilo De Rossi,&nbsp;Peter Veltink","doi":"10.1109/MEMB.2010.936555","DOIUrl":null,"url":null,"abstract":"<p><p>The possibility of gathering reliable information about movement characteristics during activities of daily living holds particular appeal for researchers. Data such as this could be used to analyze the performance of individuals undergoing rehabilitation and to provide vital information on whether or not there is an improvement during a neurorehabilitation protocol. Wearable devices are particularly promising toward this aim, because they can be used in unstructured environments (e.g., at home). Recently, two different approaches in this area have become very popular and show promising performance: the use of inertial sensors together with advanced algorithms (e.g., Kalman filters) and the development of e-textile, in which the sensing technology is directly embroidered into the garment worn by the user.</p>","PeriodicalId":50391,"journal":{"name":"IEEE Engineering in Medicine and Biology Magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MEMB.2010.936555","citationCount":"50","resultStr":"{\"title\":\"Wearable technology for biomechanics: e-textile or micromechanical sensors?\",\"authors\":\"Danilo De Rossi,&nbsp;Peter Veltink\",\"doi\":\"10.1109/MEMB.2010.936555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The possibility of gathering reliable information about movement characteristics during activities of daily living holds particular appeal for researchers. Data such as this could be used to analyze the performance of individuals undergoing rehabilitation and to provide vital information on whether or not there is an improvement during a neurorehabilitation protocol. Wearable devices are particularly promising toward this aim, because they can be used in unstructured environments (e.g., at home). Recently, two different approaches in this area have become very popular and show promising performance: the use of inertial sensors together with advanced algorithms (e.g., Kalman filters) and the development of e-textile, in which the sensing technology is directly embroidered into the garment worn by the user.</p>\",\"PeriodicalId\":50391,\"journal\":{\"name\":\"IEEE Engineering in Medicine and Biology Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/MEMB.2010.936555\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Engineering in Medicine and Biology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMB.2010.936555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Engineering in Medicine and Biology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMB.2010.936555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

在日常生活活动中收集有关运动特征的可靠信息的可能性对研究人员特别有吸引力。这样的数据可以用来分析接受康复治疗的个体的表现,并提供在神经康复治疗过程中是否有改善的重要信息。可穿戴设备特别有希望实现这一目标,因为它们可以在非结构化环境中使用(例如,在家里)。最近,这一领域有两种不同的方法变得非常流行,并显示出很好的性能:将惯性传感器与先进算法(例如卡尔曼滤波器)结合使用,以及开发电子纺织品,其中传感技术直接绣在用户穿的衣服上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wearable technology for biomechanics: e-textile or micromechanical sensors?

The possibility of gathering reliable information about movement characteristics during activities of daily living holds particular appeal for researchers. Data such as this could be used to analyze the performance of individuals undergoing rehabilitation and to provide vital information on whether or not there is an improvement during a neurorehabilitation protocol. Wearable devices are particularly promising toward this aim, because they can be used in unstructured environments (e.g., at home). Recently, two different approaches in this area have become very popular and show promising performance: the use of inertial sensors together with advanced algorithms (e.g., Kalman filters) and the development of e-textile, in which the sensing technology is directly embroidered into the garment worn by the user.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Engineering in Medicine and Biology Magazine
IEEE Engineering in Medicine and Biology Magazine 工程技术-工程:生物医学
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊最新文献
Gerontechnology Biological Database Modeling (Chen, J. and Sidhhu, A.S.; 2008) [Book Reviews] Biomedical Surfaces (Ramsden, J.; 2008) [Book Review] Holographic Imaging (Benton, S.A. and Bove, V.M.; 2008) [Book Review] Have you Invented Anything Lately? [From the Editor]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1