{"title":"从充分原因的角度来看,冗余因果关系。","authors":"Nicolle M Gatto, Ulka B Campbell","doi":"10.1186/1742-5573-7-5","DOIUrl":null,"url":null,"abstract":"<p><p> Sufficient causes of disease are redundant when an individual acquires the components of two or more sufficient causes. In this circumstance, the individual still would have become diseased even if one of the sufficient causes had not been acquired. In the context of a study, when any individuals acquire components of more than one sufficient cause over the observation period, the etiologic effect of the exposure (defined as the absolute or relative difference between the proportion of the exposed who develop the disease by the end of the study period and the proportion of those individuals who would have developed the disease at the moment they did even in the absence of the exposure) may be underestimated. Even in the absence of confounding and bias, the observed effect estimate represents only a subset of the etiologic effect. This underestimation occurs regardless of the measure of effect used.To some extent, redundancy of sufficient causes is always present, and under some circumstances, it may make a true cause of disease appear to be not causal. This problem is particularly relevant when the researcher's goal is to characterize the universe of sufficient causes of the disease, identify risk factors for targeted interventions, or construct causal diagrams. In this paper, we use the sufficient component cause model and the disease response type framework to show how redundant causation arises and the factors that determine the extent of its impact on epidemiologic effect measures.</p>","PeriodicalId":87082,"journal":{"name":"Epidemiologic perspectives & innovations : EP+I","volume":"7 ","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-5573-7-5","citationCount":"23","resultStr":"{\"title\":\"Redundant causation from a sufficient cause perspective.\",\"authors\":\"Nicolle M Gatto, Ulka B Campbell\",\"doi\":\"10.1186/1742-5573-7-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Sufficient causes of disease are redundant when an individual acquires the components of two or more sufficient causes. In this circumstance, the individual still would have become diseased even if one of the sufficient causes had not been acquired. In the context of a study, when any individuals acquire components of more than one sufficient cause over the observation period, the etiologic effect of the exposure (defined as the absolute or relative difference between the proportion of the exposed who develop the disease by the end of the study period and the proportion of those individuals who would have developed the disease at the moment they did even in the absence of the exposure) may be underestimated. Even in the absence of confounding and bias, the observed effect estimate represents only a subset of the etiologic effect. This underestimation occurs regardless of the measure of effect used.To some extent, redundancy of sufficient causes is always present, and under some circumstances, it may make a true cause of disease appear to be not causal. This problem is particularly relevant when the researcher's goal is to characterize the universe of sufficient causes of the disease, identify risk factors for targeted interventions, or construct causal diagrams. In this paper, we use the sufficient component cause model and the disease response type framework to show how redundant causation arises and the factors that determine the extent of its impact on epidemiologic effect measures.</p>\",\"PeriodicalId\":87082,\"journal\":{\"name\":\"Epidemiologic perspectives & innovations : EP+I\",\"volume\":\"7 \",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1742-5573-7-5\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic perspectives & innovations : EP+I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-5573-7-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic perspectives & innovations : EP+I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-5573-7-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Redundant causation from a sufficient cause perspective.
Sufficient causes of disease are redundant when an individual acquires the components of two or more sufficient causes. In this circumstance, the individual still would have become diseased even if one of the sufficient causes had not been acquired. In the context of a study, when any individuals acquire components of more than one sufficient cause over the observation period, the etiologic effect of the exposure (defined as the absolute or relative difference between the proportion of the exposed who develop the disease by the end of the study period and the proportion of those individuals who would have developed the disease at the moment they did even in the absence of the exposure) may be underestimated. Even in the absence of confounding and bias, the observed effect estimate represents only a subset of the etiologic effect. This underestimation occurs regardless of the measure of effect used.To some extent, redundancy of sufficient causes is always present, and under some circumstances, it may make a true cause of disease appear to be not causal. This problem is particularly relevant when the researcher's goal is to characterize the universe of sufficient causes of the disease, identify risk factors for targeted interventions, or construct causal diagrams. In this paper, we use the sufficient component cause model and the disease response type framework to show how redundant causation arises and the factors that determine the extent of its impact on epidemiologic effect measures.