Juan Tamargo, Juan Duarte, Ricardo Caballero, Eva Delpón
{"title":"Cinaciguat,一种可溶鸟苷酸环化酶激活剂,用于治疗急性心力衰竭。","authors":"Juan Tamargo, Juan Duarte, Ricardo Caballero, Eva Delpón","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine-3',5'-monophosphate (cGMP) pathway plays an important role in cardiovascular regulation by producing vasodilation and inhibiting platelet aggregation and vascular smooth muscle proliferation. The NO/SGC/cGMP pathway is disrupted in patients with heart failure as a result of a decrease in NO bioavailability and an increase in NO-insensitive forms of sGC, resulting in insufficient vasodilation. Drugs that activate sGC in a NO-independent manner may provide considerable therapeutic advantages in treating these patients. Cinaciguat (BAY-58-2667), currently in development by Bayer AG, preferentially activates sGC in its oxidized or heme-free state, when the enzyme is insensitive to both NO and nitrovasodilators. Cinaciguat exhibits potent vasodilator and antiplatelet activity, a long-lasting antihypertensive effect and a hemodynamic profile similar to that of nitrates. In clinical trials in patients with acute decompensated heart failure, cinaciguat potently unloaded the heart, increased cardiac output and renal blood flow, and preserved renal function and sodium and water excretion without further neurohumoral activation. The pharmacokinetics of cinaciguat demonstrated dose-proportionality with low individual variability and a low incidence of adverse events. The phase I and II clinical trials performed with cinaciguat so far, however, are insufficient to provide convincing evidence on the efficacy and safety of the drug. Thus, caution should be exerted before extrapolating the present preliminary data to the clinical practice.</p>","PeriodicalId":10978,"journal":{"name":"Current opinion in investigational drugs","volume":"11 9","pages":"1039-47"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cinaciguat, a soluble guanylate cyclase activator for the potential treatment of acute heart failure.\",\"authors\":\"Juan Tamargo, Juan Duarte, Ricardo Caballero, Eva Delpón\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine-3',5'-monophosphate (cGMP) pathway plays an important role in cardiovascular regulation by producing vasodilation and inhibiting platelet aggregation and vascular smooth muscle proliferation. The NO/SGC/cGMP pathway is disrupted in patients with heart failure as a result of a decrease in NO bioavailability and an increase in NO-insensitive forms of sGC, resulting in insufficient vasodilation. Drugs that activate sGC in a NO-independent manner may provide considerable therapeutic advantages in treating these patients. Cinaciguat (BAY-58-2667), currently in development by Bayer AG, preferentially activates sGC in its oxidized or heme-free state, when the enzyme is insensitive to both NO and nitrovasodilators. Cinaciguat exhibits potent vasodilator and antiplatelet activity, a long-lasting antihypertensive effect and a hemodynamic profile similar to that of nitrates. In clinical trials in patients with acute decompensated heart failure, cinaciguat potently unloaded the heart, increased cardiac output and renal blood flow, and preserved renal function and sodium and water excretion without further neurohumoral activation. The pharmacokinetics of cinaciguat demonstrated dose-proportionality with low individual variability and a low incidence of adverse events. The phase I and II clinical trials performed with cinaciguat so far, however, are insufficient to provide convincing evidence on the efficacy and safety of the drug. Thus, caution should be exerted before extrapolating the present preliminary data to the clinical practice.</p>\",\"PeriodicalId\":10978,\"journal\":{\"name\":\"Current opinion in investigational drugs\",\"volume\":\"11 9\",\"pages\":\"1039-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in investigational drugs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in investigational drugs","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cinaciguat, a soluble guanylate cyclase activator for the potential treatment of acute heart failure.
The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine-3',5'-monophosphate (cGMP) pathway plays an important role in cardiovascular regulation by producing vasodilation and inhibiting platelet aggregation and vascular smooth muscle proliferation. The NO/SGC/cGMP pathway is disrupted in patients with heart failure as a result of a decrease in NO bioavailability and an increase in NO-insensitive forms of sGC, resulting in insufficient vasodilation. Drugs that activate sGC in a NO-independent manner may provide considerable therapeutic advantages in treating these patients. Cinaciguat (BAY-58-2667), currently in development by Bayer AG, preferentially activates sGC in its oxidized or heme-free state, when the enzyme is insensitive to both NO and nitrovasodilators. Cinaciguat exhibits potent vasodilator and antiplatelet activity, a long-lasting antihypertensive effect and a hemodynamic profile similar to that of nitrates. In clinical trials in patients with acute decompensated heart failure, cinaciguat potently unloaded the heart, increased cardiac output and renal blood flow, and preserved renal function and sodium and water excretion without further neurohumoral activation. The pharmacokinetics of cinaciguat demonstrated dose-proportionality with low individual variability and a low incidence of adverse events. The phase I and II clinical trials performed with cinaciguat so far, however, are insufficient to provide convincing evidence on the efficacy and safety of the drug. Thus, caution should be exerted before extrapolating the present preliminary data to the clinical practice.