果蝇神经肌肉活动区的短期可塑性机制。

Hfsp Journal Pub Date : 2010-04-01 Epub Date: 2010-04-08 DOI:10.2976/1.3338710
Stefan Hallermann, Manfred Heckmann, Robert J Kittel
{"title":"果蝇神经肌肉活动区的短期可塑性机制。","authors":"Stefan Hallermann,&nbsp;Manfred Heckmann,&nbsp;Robert J Kittel","doi":"10.2976/1.3338710","DOIUrl":null,"url":null,"abstract":"<p><p>DURING SHORT BURSTS OF NEURONAL ACTIVITY, CHANGES IN THE EFFICACY OF NEUROTRANSMITTER RELEASE ARE GOVERNED PRIMARILY BY TWO COUNTERACTING PROCESSES: (1) Ca(2+)-dependent elevations of vesicle release probability and (2) depletion of synaptic vesicles. The dynamic interplay of both processes contributes to the expression of activity-dependent synaptic plasticity. Here, we exploited various facets of short-term plasticity at the Drosophila neuromuscular junction to dissect these two processes. This enabled us to rigorously analyze different models of synaptic vesicle pools in terms of their size and mobilization properties. Independent of the specific model, we estimate approximately 300 readily releasable vesicles with an average release probability of approximately 50% in 1 mM extracellular calcium ( approximately 5% in 0.4 mM extracellular calcium) under resting conditions. The models also helped interpreting the altered short-term plasticity of the previously reported mutant of the active zone component Bruchpilot (BRP). Finally, our results were independently confirmed through fluctuation analysis. Our data reveal that the altered short-term plasticity observed in BRP mutants cannot be accounted for by delocalized Ca(2+) channels alone and thus suggest an additional role of BRP in short-term plasticity.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"4 2","pages":"72-84"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2976/1.3338710","citationCount":"55","resultStr":"{\"title\":\"Mechanisms of short-term plasticity at neuromuscular active zones of Drosophila.\",\"authors\":\"Stefan Hallermann,&nbsp;Manfred Heckmann,&nbsp;Robert J Kittel\",\"doi\":\"10.2976/1.3338710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DURING SHORT BURSTS OF NEURONAL ACTIVITY, CHANGES IN THE EFFICACY OF NEUROTRANSMITTER RELEASE ARE GOVERNED PRIMARILY BY TWO COUNTERACTING PROCESSES: (1) Ca(2+)-dependent elevations of vesicle release probability and (2) depletion of synaptic vesicles. The dynamic interplay of both processes contributes to the expression of activity-dependent synaptic plasticity. Here, we exploited various facets of short-term plasticity at the Drosophila neuromuscular junction to dissect these two processes. This enabled us to rigorously analyze different models of synaptic vesicle pools in terms of their size and mobilization properties. Independent of the specific model, we estimate approximately 300 readily releasable vesicles with an average release probability of approximately 50% in 1 mM extracellular calcium ( approximately 5% in 0.4 mM extracellular calcium) under resting conditions. The models also helped interpreting the altered short-term plasticity of the previously reported mutant of the active zone component Bruchpilot (BRP). Finally, our results were independently confirmed through fluctuation analysis. Our data reveal that the altered short-term plasticity observed in BRP mutants cannot be accounted for by delocalized Ca(2+) channels alone and thus suggest an additional role of BRP in short-term plasticity.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"4 2\",\"pages\":\"72-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2976/1.3338710\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.3338710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.3338710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

在神经元活动的短暂爆发期间,神经递质释放效果的变化主要由两个抵消过程控制:(1)Ca(2+)依赖性囊泡释放概率的升高和(2)突触囊泡的消耗。这两个过程的动态相互作用有助于活动依赖性突触可塑性的表达。在这里,我们利用果蝇神经肌肉连接处的短期可塑性的各个方面来剖析这两个过程。这使我们能够严格分析突触囊泡池的大小和动员特性的不同模型。与特定模型无关,我们估计在静息条件下约有300个易释放囊泡,在1 mM细胞外钙中平均释放概率约为50%(在0.4 mM细胞外钙中约为5%)。这些模型还有助于解释先前报道的活跃区成分Bruchpilot (BRP)突变体的短期可塑性的改变。最后,通过波动分析独立验证了我们的结果。我们的数据显示,在BRP突变体中观察到的短期可塑性的改变不能仅仅由离域的Ca(2+)通道来解释,因此表明BRP在短期可塑性中起着额外的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of short-term plasticity at neuromuscular active zones of Drosophila.

DURING SHORT BURSTS OF NEURONAL ACTIVITY, CHANGES IN THE EFFICACY OF NEUROTRANSMITTER RELEASE ARE GOVERNED PRIMARILY BY TWO COUNTERACTING PROCESSES: (1) Ca(2+)-dependent elevations of vesicle release probability and (2) depletion of synaptic vesicles. The dynamic interplay of both processes contributes to the expression of activity-dependent synaptic plasticity. Here, we exploited various facets of short-term plasticity at the Drosophila neuromuscular junction to dissect these two processes. This enabled us to rigorously analyze different models of synaptic vesicle pools in terms of their size and mobilization properties. Independent of the specific model, we estimate approximately 300 readily releasable vesicles with an average release probability of approximately 50% in 1 mM extracellular calcium ( approximately 5% in 0.4 mM extracellular calcium) under resting conditions. The models also helped interpreting the altered short-term plasticity of the previously reported mutant of the active zone component Bruchpilot (BRP). Finally, our results were independently confirmed through fluctuation analysis. Our data reveal that the altered short-term plasticity observed in BRP mutants cannot be accounted for by delocalized Ca(2+) channels alone and thus suggest an additional role of BRP in short-term plasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hfsp Journal
Hfsp Journal 综合性期刊-综合性期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Frontiers in life science. Inherited adaptation of genome-rewired cells in response to a challenging environment. Network reconstruction reveals new links between aging and calorie restriction in yeast. Molecular motors as an auto-oscillator. Robustness versus evolvability: a paradigm revisited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1