将社区精神卫生服务的频繁服务使用者分配到不同护理包的预测模型。

Epidemiologia e psichiatria sociale Pub Date : 2010-04-01
Laura Grigoletti, Francesco Amaddeo, Aldrigo Grassi, Massimo Boldrini, Marco Chiappelli, Mauro Percudani, Francesco Catapano, Andrea Fiorillo, Francesco Perris, Maurizio Bacigalupi, Paolo Albanese, Simona Simonetti, Paola De Agostini, Michele Tansella
{"title":"将社区精神卫生服务的频繁服务使用者分配到不同护理包的预测模型。","authors":"Laura Grigoletti,&nbsp;Francesco Amaddeo,&nbsp;Aldrigo Grassi,&nbsp;Massimo Boldrini,&nbsp;Marco Chiappelli,&nbsp;Mauro Percudani,&nbsp;Francesco Catapano,&nbsp;Andrea Fiorillo,&nbsp;Francesco Perris,&nbsp;Maurizio Bacigalupi,&nbsp;Paolo Albanese,&nbsp;Simona Simonetti,&nbsp;Paola De Agostini,&nbsp;Michele Tansella","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To develop predictive models to allocate patients into frequent and low service users groups within the Italian Community-based Mental Health Services (CMHSs). To allocate frequent users to different packages of care, identifying the costs of these packages.</p><p><strong>Methods: </strong>Socio-demographic and clinical data and GAF scores at baseline were collected for 1250 users attending five CMHSs. All psychiatric contacts made by these patients during six months were recorded. A logistic regression identified frequent service users predictive variables. Multinomial logistic regression identified variables able to predict the most appropriate package of care. A cost function was utilised to estimate costs.</p><p><strong>Results: </strong>Frequent service users were 49%, using nearly 90% of all contacts. The model classified correctly 80% of users in the frequent and low users groups. Three packages of care were identified: Basic Community Treatment (4,133 Euro per six months); Intensive Community Treatment (6,180 Euro) and Rehabilitative Community Treatment (11,984 Euro) for 83%, 6% and 11% of frequent service users respectively. The model was found to be accurate for 85% of users.</p><p><strong>Conclusion: </strong>It is possible to develop predictive models to identify frequent service users and to assign them to pre-defined packages of care, and to use these models to inform the funding of psychiatric care.</p>","PeriodicalId":72946,"journal":{"name":"Epidemiologia e psichiatria sociale","volume":"19 2","pages":"168-77"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A predictive model to allocate frequent service users of community-based mental health services to different packages of care.\",\"authors\":\"Laura Grigoletti,&nbsp;Francesco Amaddeo,&nbsp;Aldrigo Grassi,&nbsp;Massimo Boldrini,&nbsp;Marco Chiappelli,&nbsp;Mauro Percudani,&nbsp;Francesco Catapano,&nbsp;Andrea Fiorillo,&nbsp;Francesco Perris,&nbsp;Maurizio Bacigalupi,&nbsp;Paolo Albanese,&nbsp;Simona Simonetti,&nbsp;Paola De Agostini,&nbsp;Michele Tansella\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>To develop predictive models to allocate patients into frequent and low service users groups within the Italian Community-based Mental Health Services (CMHSs). To allocate frequent users to different packages of care, identifying the costs of these packages.</p><p><strong>Methods: </strong>Socio-demographic and clinical data and GAF scores at baseline were collected for 1250 users attending five CMHSs. All psychiatric contacts made by these patients during six months were recorded. A logistic regression identified frequent service users predictive variables. Multinomial logistic regression identified variables able to predict the most appropriate package of care. A cost function was utilised to estimate costs.</p><p><strong>Results: </strong>Frequent service users were 49%, using nearly 90% of all contacts. The model classified correctly 80% of users in the frequent and low users groups. Three packages of care were identified: Basic Community Treatment (4,133 Euro per six months); Intensive Community Treatment (6,180 Euro) and Rehabilitative Community Treatment (11,984 Euro) for 83%, 6% and 11% of frequent service users respectively. The model was found to be accurate for 85% of users.</p><p><strong>Conclusion: </strong>It is possible to develop predictive models to identify frequent service users and to assign them to pre-defined packages of care, and to use these models to inform the funding of psychiatric care.</p>\",\"PeriodicalId\":72946,\"journal\":{\"name\":\"Epidemiologia e psichiatria sociale\",\"volume\":\"19 2\",\"pages\":\"168-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologia e psichiatria sociale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologia e psichiatria sociale","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:开发预测模型,将患者分配到意大利社区精神卫生服务(cmhs)中频繁和低服务用户群体。将频繁使用者分配到不同的一揽子保健服务,确定这些一揽子保健服务的费用。方法:收集5家cmhs的1250名用户的社会人口学和临床数据以及基线GAF评分。这些患者在6个月内的所有精神病学接触都被记录下来。逻辑回归确定了频繁服务用户的预测变量。多项逻辑回归确定了能够预测最合适的护理方案的变量。成本函数被用来估计成本。结果:频繁服务用户占49%,使用了近90%的联系人。该模型在频繁用户组和低用户组中正确分类了80%的用户。确定了三个护理包:基本社区治疗(每六个月4,133欧元);密集社区治疗(6180欧元)和康复社区治疗(11984欧元)分别用于83%、6%和11%的频繁服务使用者。该模型被发现对85%的用户是准确的。结论:可以建立预测模型来识别频繁服务的使用者,并将他们分配到预先定义的护理包中,并使用这些模型来通知精神病学护理的资金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A predictive model to allocate frequent service users of community-based mental health services to different packages of care.

Aim: To develop predictive models to allocate patients into frequent and low service users groups within the Italian Community-based Mental Health Services (CMHSs). To allocate frequent users to different packages of care, identifying the costs of these packages.

Methods: Socio-demographic and clinical data and GAF scores at baseline were collected for 1250 users attending five CMHSs. All psychiatric contacts made by these patients during six months were recorded. A logistic regression identified frequent service users predictive variables. Multinomial logistic regression identified variables able to predict the most appropriate package of care. A cost function was utilised to estimate costs.

Results: Frequent service users were 49%, using nearly 90% of all contacts. The model classified correctly 80% of users in the frequent and low users groups. Three packages of care were identified: Basic Community Treatment (4,133 Euro per six months); Intensive Community Treatment (6,180 Euro) and Rehabilitative Community Treatment (11,984 Euro) for 83%, 6% and 11% of frequent service users respectively. The model was found to be accurate for 85% of users.

Conclusion: It is possible to develop predictive models to identify frequent service users and to assign them to pre-defined packages of care, and to use these models to inform the funding of psychiatric care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduzione Arsenic accumulation in edible vegetables and health risk reduction by groundwater treatment using an adsorption process. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. Acute in-patient care in modern, community-based mental health services. Where and how? Is locating acute wards in the general hospital an essential element in psychiatric reform? The U.K. experience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1