基于小波主成分的虚警有界分割对动态动态心电事件进行了决策统计分析。

M R Homaeinezhad, A Ghaffari, H Najjaran Toosi, M Tahmasebi, M M Daevaeiha
{"title":"基于小波主成分的虚警有界分割对动态动态心电事件进行了决策统计分析。","authors":"M R Homaeinezhad,&nbsp;A Ghaffari,&nbsp;H Najjaran Toosi,&nbsp;M Tahmasebi,&nbsp;M M Daevaeiha","doi":"10.1007/s10558-010-9103-2","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to develop and describe a new ambulatory holter electrocardiogram (ECG) events detection-delineation algorithm with the major focus on the bounded false-alarm probability (FAP) segmentation of an information-optimized decision statistic. After implementation of appropriate preprocessing methods to the discrete wavelet transform (DWT) of the original ECG data, a uniform length sliding window is applied to the obtained signal and in each slid, six feature vectors namely as summation of the nonlinearly amplified Hilbert transform, summation of absolute first order differentiation, summation of absolute second order differentiation, curve length, area and variance of the excerpted segment are calculated to construct a newly proposed principal components analyzed geometric index (PCAGI) by application of a linear orthonormal projection. In the next step, the α-level Neyman-Pearson classifier (which is a FAP controlled tester) is implemented to detect and delineate QRS complexes. The presented method was applied to MIT-BIH Arrhythmia Database, QT Database, and T-Wave Alternans Database and as a result, the average values of sensitivity and positive predictivity Se = 99.96% and P+ = 99.96% are obtained for the detection of QRS complexes, with the average maximum delineation error of 5.7, 3.8 and 6.1 m for P-wave, QRS complex and T-wave, respectively. Also, the proposed method was applied to DAY general hospital high resolution holter data (more than 1,500,000 beats including Bundle Branch Blocks-BBB, Premature Ventricular Complex-PVC and Premature Atrial Complex-PAC) and average values of Se = 99.98% and P+ = 99.97% are obtained for QRS detection. In summary, marginal performance improvement of ECG events detection-delineation process in a widespread values of signal to noise ratio (SNR), reliable robustness against strong noise, artifacts and probable severe arrhythmia(s) of high resolution holter data and the processing speed 155,000 samples/s can be mentioned as important merits and capabilities of the proposed algorithm.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 3","pages":"136-56"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9103-2","citationCount":"6","resultStr":"{\"title\":\"Optimal delineation of ambulatory holter ECG events via false-alarm bounded segmentation of a wavelet-based principal components analyzed decision statistic.\",\"authors\":\"M R Homaeinezhad,&nbsp;A Ghaffari,&nbsp;H Najjaran Toosi,&nbsp;M Tahmasebi,&nbsp;M M Daevaeiha\",\"doi\":\"10.1007/s10558-010-9103-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study is to develop and describe a new ambulatory holter electrocardiogram (ECG) events detection-delineation algorithm with the major focus on the bounded false-alarm probability (FAP) segmentation of an information-optimized decision statistic. After implementation of appropriate preprocessing methods to the discrete wavelet transform (DWT) of the original ECG data, a uniform length sliding window is applied to the obtained signal and in each slid, six feature vectors namely as summation of the nonlinearly amplified Hilbert transform, summation of absolute first order differentiation, summation of absolute second order differentiation, curve length, area and variance of the excerpted segment are calculated to construct a newly proposed principal components analyzed geometric index (PCAGI) by application of a linear orthonormal projection. In the next step, the α-level Neyman-Pearson classifier (which is a FAP controlled tester) is implemented to detect and delineate QRS complexes. The presented method was applied to MIT-BIH Arrhythmia Database, QT Database, and T-Wave Alternans Database and as a result, the average values of sensitivity and positive predictivity Se = 99.96% and P+ = 99.96% are obtained for the detection of QRS complexes, with the average maximum delineation error of 5.7, 3.8 and 6.1 m for P-wave, QRS complex and T-wave, respectively. Also, the proposed method was applied to DAY general hospital high resolution holter data (more than 1,500,000 beats including Bundle Branch Blocks-BBB, Premature Ventricular Complex-PVC and Premature Atrial Complex-PAC) and average values of Se = 99.98% and P+ = 99.97% are obtained for QRS detection. In summary, marginal performance improvement of ECG events detection-delineation process in a widespread values of signal to noise ratio (SNR), reliable robustness against strong noise, artifacts and probable severe arrhythmia(s) of high resolution holter data and the processing speed 155,000 samples/s can be mentioned as important merits and capabilities of the proposed algorithm.</p>\",\"PeriodicalId\":55275,\"journal\":{\"name\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"volume\":\"10 3\",\"pages\":\"136-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10558-010-9103-2\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10558-010-9103-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-010-9103-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究的目的是开发和描述一种新的动态动态心电图(ECG)事件检测-描绘算法,主要关注信息优化决策统计的有界假警概率(FAP)分割。在对原始心电数据的离散小波变换(DWT)进行适当的预处理后,对得到的信号施加一个等长滑动窗口,在每次滑动中,有6个特征向量,即非线性放大希尔伯特变换的和、绝对一阶微分的和、绝对二阶微分的和、曲线长度、利用线性正交投影的方法,计算提取的线段的面积和方差,构造新的主成分分析几何指数(PCAGI)。下一步,实现α-级Neyman-Pearson分类器(FAP控制测试器)来检测和描述QRS复合物。将该方法应用于MIT-BIH心律失常数据库、QT数据库和t波交替数据库,检测QRS复合物的灵敏度平均值Se = 99.96%,阳性预测值P+ = 99.96%, P波、QRS复合物和t波的平均最大描绘误差分别为5.7、3.8和6.1 m。并将该方法应用于DAY综合医院的高分辨率动态心电图数据(超过150万次心跳,包括束状分支阻滞- bbb、过早心室复合物- pvc和过早心房复合物- pac),得到QRS检测的Se = 99.98%和P+ = 99.97%的平均值。综上所述,该算法在广泛的信噪比(SNR)值、对高分辨率动态心电图数据的强噪声、伪像和可能的严重心律失常具有可靠的鲁棒性以及155,000个样本/s的处理速度等方面具有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal delineation of ambulatory holter ECG events via false-alarm bounded segmentation of a wavelet-based principal components analyzed decision statistic.

The aim of this study is to develop and describe a new ambulatory holter electrocardiogram (ECG) events detection-delineation algorithm with the major focus on the bounded false-alarm probability (FAP) segmentation of an information-optimized decision statistic. After implementation of appropriate preprocessing methods to the discrete wavelet transform (DWT) of the original ECG data, a uniform length sliding window is applied to the obtained signal and in each slid, six feature vectors namely as summation of the nonlinearly amplified Hilbert transform, summation of absolute first order differentiation, summation of absolute second order differentiation, curve length, area and variance of the excerpted segment are calculated to construct a newly proposed principal components analyzed geometric index (PCAGI) by application of a linear orthonormal projection. In the next step, the α-level Neyman-Pearson classifier (which is a FAP controlled tester) is implemented to detect and delineate QRS complexes. The presented method was applied to MIT-BIH Arrhythmia Database, QT Database, and T-Wave Alternans Database and as a result, the average values of sensitivity and positive predictivity Se = 99.96% and P+ = 99.96% are obtained for the detection of QRS complexes, with the average maximum delineation error of 5.7, 3.8 and 6.1 m for P-wave, QRS complex and T-wave, respectively. Also, the proposed method was applied to DAY general hospital high resolution holter data (more than 1,500,000 beats including Bundle Branch Blocks-BBB, Premature Ventricular Complex-PVC and Premature Atrial Complex-PAC) and average values of Se = 99.98% and P+ = 99.97% are obtained for QRS detection. In summary, marginal performance improvement of ECG events detection-delineation process in a widespread values of signal to noise ratio (SNR), reliable robustness against strong noise, artifacts and probable severe arrhythmia(s) of high resolution holter data and the processing speed 155,000 samples/s can be mentioned as important merits and capabilities of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Bioprinting of a Tissue Engineered Human Heart Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 2: From Fabrication to Optimization Square Root Design for Natural Frequency Module of Dynamic ECG Features—a Preliminary Study Tissue-Mimicking Materials for Cardiac Imaging Phantom—Section 1: From Conception to Materials Selection Biopolymers as Potential Carrier for Effervescent Reaction Based Drug Delivery System in Gastrointestinal Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1