胰岛细胞:钙依赖性肽释放模型。

Hfsp Journal Pub Date : 2010-04-01 Epub Date: 2010-03-30 DOI:10.2976/1.3364560
Bernat Soria, Eva Tudurí, Alejandro González, Abdelkrim Hmadcha, Franz Martin, Angel Nadal, Ivan Quesada
{"title":"胰岛细胞:钙依赖性肽释放模型。","authors":"Bernat Soria,&nbsp;Eva Tudurí,&nbsp;Alejandro González,&nbsp;Abdelkrim Hmadcha,&nbsp;Franz Martin,&nbsp;Angel Nadal,&nbsp;Ivan Quesada","doi":"10.2976/1.3364560","DOIUrl":null,"url":null,"abstract":"<p><p>In mammals the concentration of blood glucose is kept close to 5 mmol∕l. Different cell types in the islet of Langerhans participate in the control of glucose homeostasis. β-cells, the most frequent type in pancreatic islets, are responsible for the synthesis, storage, and release of insulin. Insulin, released with increases in blood glucose promotes glucose uptake into the cells. In response to glucose changes, pancreatic α-, β-, and δ-cells regulate their electrical activity and Ca(2+) signals to release glucagon, insulin, and somatostatin, respectively. While all these signaling steps are stimulated in hypoglycemic conditions in α-cells, the activation of these events require higher glucose concentrations in β and also in δ-cells. The stimulus-secretion coupling process and intracellular Ca(2+) ([Ca(2+)](i)) dynamics that allow β-cells to secrete is well-accepted. Conversely, the mechanisms that regulate α- and δ-cell secretion are still under study. Here, we will consider the glucose-induced signaling mechanisms in each cell type and the mathematical models that explain Ca(2+) dynamics.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"4 2","pages":"52-60"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2976/1.3364560","citationCount":"16","resultStr":"{\"title\":\"Pancreatic islet cells: a model for calcium-dependent peptide release.\",\"authors\":\"Bernat Soria,&nbsp;Eva Tudurí,&nbsp;Alejandro González,&nbsp;Abdelkrim Hmadcha,&nbsp;Franz Martin,&nbsp;Angel Nadal,&nbsp;Ivan Quesada\",\"doi\":\"10.2976/1.3364560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In mammals the concentration of blood glucose is kept close to 5 mmol∕l. Different cell types in the islet of Langerhans participate in the control of glucose homeostasis. β-cells, the most frequent type in pancreatic islets, are responsible for the synthesis, storage, and release of insulin. Insulin, released with increases in blood glucose promotes glucose uptake into the cells. In response to glucose changes, pancreatic α-, β-, and δ-cells regulate their electrical activity and Ca(2+) signals to release glucagon, insulin, and somatostatin, respectively. While all these signaling steps are stimulated in hypoglycemic conditions in α-cells, the activation of these events require higher glucose concentrations in β and also in δ-cells. The stimulus-secretion coupling process and intracellular Ca(2+) ([Ca(2+)](i)) dynamics that allow β-cells to secrete is well-accepted. Conversely, the mechanisms that regulate α- and δ-cell secretion are still under study. Here, we will consider the glucose-induced signaling mechanisms in each cell type and the mathematical models that explain Ca(2+) dynamics.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"4 2\",\"pages\":\"52-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2976/1.3364560\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.3364560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.3364560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/3/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

哺乳动物的血糖浓度保持在5 mmol∕l左右。朗格汉斯胰岛的不同细胞类型参与葡萄糖稳态的控制。β细胞是胰岛中最常见的细胞类型,负责胰岛素的合成、储存和释放。随着血糖升高而释放的胰岛素促进了细胞对葡萄糖的吸收。胰腺α-、β-和δ-细胞分别调节其电活动和Ca(2+)信号以释放胰高血糖素、胰岛素和生长抑素。虽然所有这些信号传导步骤在α-细胞的低血糖条件下被刺激,但这些事件的激活需要β细胞和δ细胞中较高的葡萄糖浓度。刺激-分泌耦合过程和细胞内Ca(2+) ([Ca(2+)](i))动力学允许β-细胞分泌已被广泛接受。相反,调节α-和δ-细胞分泌的机制仍在研究中。在这里,我们将考虑每种细胞类型中葡萄糖诱导的信号机制和解释Ca(2+)动力学的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pancreatic islet cells: a model for calcium-dependent peptide release.

In mammals the concentration of blood glucose is kept close to 5 mmol∕l. Different cell types in the islet of Langerhans participate in the control of glucose homeostasis. β-cells, the most frequent type in pancreatic islets, are responsible for the synthesis, storage, and release of insulin. Insulin, released with increases in blood glucose promotes glucose uptake into the cells. In response to glucose changes, pancreatic α-, β-, and δ-cells regulate their electrical activity and Ca(2+) signals to release glucagon, insulin, and somatostatin, respectively. While all these signaling steps are stimulated in hypoglycemic conditions in α-cells, the activation of these events require higher glucose concentrations in β and also in δ-cells. The stimulus-secretion coupling process and intracellular Ca(2+) ([Ca(2+)](i)) dynamics that allow β-cells to secrete is well-accepted. Conversely, the mechanisms that regulate α- and δ-cell secretion are still under study. Here, we will consider the glucose-induced signaling mechanisms in each cell type and the mathematical models that explain Ca(2+) dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hfsp Journal
Hfsp Journal 综合性期刊-综合性期刊
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Frontiers in life science. Inherited adaptation of genome-rewired cells in response to a challenging environment. Network reconstruction reveals new links between aging and calorie restriction in yeast. Molecular motors as an auto-oscillator. Robustness versus evolvability: a paradigm revisited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1