{"title":"朗格汉斯岛β细胞感知葡萄糖梯度的数学模型。","authors":"Michael Meyer-Hermann, Richard K P Benninger","doi":"10.2976/1.3354862","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic β-cells release insulin in response to increased glucose levels. Compared to isolated β-cells, β-cells embedded within the islets of Langerhans network exhibit a coordinated and greater insulin secretion response to glucose. This coordinated activity is considered to rely on gap-junctions. We investigated the β-cell electrophysiology and the calcium dynamics in islets in response to glucose gradients. While at constant glucose the network of β-cells fires in a correlated fashion, a glucose gradient induces a sharp division into an active and an inactive part. We hypothesized that this sharp transition is mediated by the specific properties of the gap-junctions. We used a mathematical model of the β-cell electrophysiology in islets to discuss possible origins of this sharp transition in electrical activity. In silico, gap-junctions were required for such a transition. However, the small width of transition was only found when a stochastic variability of the expression of key transmembrane proteins, such as the ATP-dependent potassium channel, was included. The agreement with experimental data was further improved by assuming a delay of gap-junction currents, which points to a role of spatial constraints in the β-cell. This result clearly demonstrates the power of mathematical modeling in disentangling causal relationships in complex systems.</p>","PeriodicalId":55056,"journal":{"name":"Hfsp Journal","volume":"4 2","pages":"61-71"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2976/1.3354862","citationCount":"15","resultStr":"{\"title\":\"A mathematical model of β-cells in an islet of Langerhans sensing a glucose gradient.\",\"authors\":\"Michael Meyer-Hermann, Richard K P Benninger\",\"doi\":\"10.2976/1.3354862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic β-cells release insulin in response to increased glucose levels. Compared to isolated β-cells, β-cells embedded within the islets of Langerhans network exhibit a coordinated and greater insulin secretion response to glucose. This coordinated activity is considered to rely on gap-junctions. We investigated the β-cell electrophysiology and the calcium dynamics in islets in response to glucose gradients. While at constant glucose the network of β-cells fires in a correlated fashion, a glucose gradient induces a sharp division into an active and an inactive part. We hypothesized that this sharp transition is mediated by the specific properties of the gap-junctions. We used a mathematical model of the β-cell electrophysiology in islets to discuss possible origins of this sharp transition in electrical activity. In silico, gap-junctions were required for such a transition. However, the small width of transition was only found when a stochastic variability of the expression of key transmembrane proteins, such as the ATP-dependent potassium channel, was included. The agreement with experimental data was further improved by assuming a delay of gap-junction currents, which points to a role of spatial constraints in the β-cell. This result clearly demonstrates the power of mathematical modeling in disentangling causal relationships in complex systems.</p>\",\"PeriodicalId\":55056,\"journal\":{\"name\":\"Hfsp Journal\",\"volume\":\"4 2\",\"pages\":\"61-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2976/1.3354862\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hfsp Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2976/1.3354862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hfsp Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2976/1.3354862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A mathematical model of β-cells in an islet of Langerhans sensing a glucose gradient.
Pancreatic β-cells release insulin in response to increased glucose levels. Compared to isolated β-cells, β-cells embedded within the islets of Langerhans network exhibit a coordinated and greater insulin secretion response to glucose. This coordinated activity is considered to rely on gap-junctions. We investigated the β-cell electrophysiology and the calcium dynamics in islets in response to glucose gradients. While at constant glucose the network of β-cells fires in a correlated fashion, a glucose gradient induces a sharp division into an active and an inactive part. We hypothesized that this sharp transition is mediated by the specific properties of the gap-junctions. We used a mathematical model of the β-cell electrophysiology in islets to discuss possible origins of this sharp transition in electrical activity. In silico, gap-junctions were required for such a transition. However, the small width of transition was only found when a stochastic variability of the expression of key transmembrane proteins, such as the ATP-dependent potassium channel, was included. The agreement with experimental data was further improved by assuming a delay of gap-junction currents, which points to a role of spatial constraints in the β-cell. This result clearly demonstrates the power of mathematical modeling in disentangling causal relationships in complex systems.