{"title":"模拟两种免疫效应器两株抗原相互作用的研究。","authors":"El-Sayed M Ahmed, Hala A El-Saka","doi":"10.1186/1753-4631-4-6","DOIUrl":null,"url":null,"abstract":"<p><p> In this paper we consider the fractional order model with two immune effectors interacting with two strain antigen. The systems may explain the recurrence of some diseases e.g. tuberculosis (TB). The stability of equilibrium points are studied. Numerical solutions of this model are given. Using integer order system the system oscillates. Using fractional order system the system converges to a stable internal equilibrium. Ulam-Hyers stability of the system has been studied.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 ","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-4-6","citationCount":"0","resultStr":"{\"title\":\"On modeling two immune effectors two strain antigen interaction.\",\"authors\":\"El-Sayed M Ahmed, Hala A El-Saka\",\"doi\":\"10.1186/1753-4631-4-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> In this paper we consider the fractional order model with two immune effectors interacting with two strain antigen. The systems may explain the recurrence of some diseases e.g. tuberculosis (TB). The stability of equilibrium points are studied. Numerical solutions of this model are given. Using integer order system the system oscillates. Using fractional order system the system converges to a stable internal equilibrium. Ulam-Hyers stability of the system has been studied.</p>\",\"PeriodicalId\":87480,\"journal\":{\"name\":\"Nonlinear biomedical physics\",\"volume\":\"4 \",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1753-4631-4-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear biomedical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1753-4631-4-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear biomedical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1753-4631-4-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On modeling two immune effectors two strain antigen interaction.
In this paper we consider the fractional order model with two immune effectors interacting with two strain antigen. The systems may explain the recurrence of some diseases e.g. tuberculosis (TB). The stability of equilibrium points are studied. Numerical solutions of this model are given. Using integer order system the system oscillates. Using fractional order system the system converges to a stable internal equilibrium. Ulam-Hyers stability of the system has been studied.