{"title":"高维数据的模型选择程序。","authors":"Yongli Zhang, Xiaotong Shen","doi":"10.1002/sam.10088","DOIUrl":null,"url":null,"abstract":"<p><p>For high-dimensional regression, the number of predictors may greatly exceed the sample size but only a small fraction of them are related to the response. Therefore, variable selection is inevitable, where consistent model selection is the primary concern. However, conventional consistent model selection criteria like BIC may be inadequate due to their nonadaptivity to the model space and infeasibility of exhaustive search. To address these two issues, we establish a probability lower bound of selecting the smallest true model by an information criterion, based on which we propose a model selection criterion, what we call RIC(c), which adapts to the model space. Furthermore, we develop a computationally feasible method combining the computational power of least angle regression (LAR) with of RIC(c). Both theoretical and simulation studies show that this method identifies the smallest true model with probability converging to one if the smallest true model is selected by LAR. The proposed method is applied to real data from the power market and outperforms the backward variable selection in terms of price forecasting accuracy.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"3 5","pages":"350-358"},"PeriodicalIF":2.1000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sam.10088","citationCount":"29","resultStr":"{\"title\":\"Model selection procedure for high-dimensional data.\",\"authors\":\"Yongli Zhang, Xiaotong Shen\",\"doi\":\"10.1002/sam.10088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For high-dimensional regression, the number of predictors may greatly exceed the sample size but only a small fraction of them are related to the response. Therefore, variable selection is inevitable, where consistent model selection is the primary concern. However, conventional consistent model selection criteria like BIC may be inadequate due to their nonadaptivity to the model space and infeasibility of exhaustive search. To address these two issues, we establish a probability lower bound of selecting the smallest true model by an information criterion, based on which we propose a model selection criterion, what we call RIC(c), which adapts to the model space. Furthermore, we develop a computationally feasible method combining the computational power of least angle regression (LAR) with of RIC(c). Both theoretical and simulation studies show that this method identifies the smallest true model with probability converging to one if the smallest true model is selected by LAR. The proposed method is applied to real data from the power market and outperforms the backward variable selection in terms of price forecasting accuracy.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"3 5\",\"pages\":\"350-358\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/sam.10088\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.10088\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.10088","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Model selection procedure for high-dimensional data.
For high-dimensional regression, the number of predictors may greatly exceed the sample size but only a small fraction of them are related to the response. Therefore, variable selection is inevitable, where consistent model selection is the primary concern. However, conventional consistent model selection criteria like BIC may be inadequate due to their nonadaptivity to the model space and infeasibility of exhaustive search. To address these two issues, we establish a probability lower bound of selecting the smallest true model by an information criterion, based on which we propose a model selection criterion, what we call RIC(c), which adapts to the model space. Furthermore, we develop a computationally feasible method combining the computational power of least angle regression (LAR) with of RIC(c). Both theoretical and simulation studies show that this method identifies the smallest true model with probability converging to one if the smallest true model is selected by LAR. The proposed method is applied to real data from the power market and outperforms the backward variable selection in terms of price forecasting accuracy.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.