传染病暴发中的错误报告,适用于甲型H1N1大流行性流感。

Laura F White, Marcello Pagano
{"title":"传染病暴发中的错误报告,适用于甲型H1N1大流行性流感。","authors":"Laura F White,&nbsp;Marcello Pagano","doi":"10.1186/1742-5573-7-12","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Effectively responding to infectious disease outbreaks requires a well-informed response. Quantitative methods for analyzing outbreak data and estimating key parameters to characterize the spread of the outbreak, including the reproductive number and the serial interval, often assume that the data collected is complete. In reality reporting delays, undetected cases or lack of sensitive and specific tests to diagnose disease lead to reporting errors in the case counts. Here we provide insight on the impact that such reporting errors might have on the estimation of these key parameters.</p><p><strong>Results: </strong>We show that when the proportion of cases reported is changing through the study period, the estimates of key epidemiological parameters are biased. Using data from the Influenza A/H1N1 outbreak in La Gloria, Mexico, we provide estimates of these parameters, accounting for possible reporting errors, and show that they can be biased by as much as 33%, if reporting issues are not accounted for.</p><p><strong>Conclusions: </strong>Failure to account for missing data can lead to misleading and inaccurate estimates of epidemic parameters.</p>","PeriodicalId":87082,"journal":{"name":"Epidemiologic perspectives & innovations : EP+I","volume":"7 ","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-5573-7-12","citationCount":"32","resultStr":"{\"title\":\"Reporting errors in infectious disease outbreaks, with an application to Pandemic Influenza A/H1N1.\",\"authors\":\"Laura F White,&nbsp;Marcello Pagano\",\"doi\":\"10.1186/1742-5573-7-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Effectively responding to infectious disease outbreaks requires a well-informed response. Quantitative methods for analyzing outbreak data and estimating key parameters to characterize the spread of the outbreak, including the reproductive number and the serial interval, often assume that the data collected is complete. In reality reporting delays, undetected cases or lack of sensitive and specific tests to diagnose disease lead to reporting errors in the case counts. Here we provide insight on the impact that such reporting errors might have on the estimation of these key parameters.</p><p><strong>Results: </strong>We show that when the proportion of cases reported is changing through the study period, the estimates of key epidemiological parameters are biased. Using data from the Influenza A/H1N1 outbreak in La Gloria, Mexico, we provide estimates of these parameters, accounting for possible reporting errors, and show that they can be biased by as much as 33%, if reporting issues are not accounted for.</p><p><strong>Conclusions: </strong>Failure to account for missing data can lead to misleading and inaccurate estimates of epidemic parameters.</p>\",\"PeriodicalId\":87082,\"journal\":{\"name\":\"Epidemiologic perspectives & innovations : EP+I\",\"volume\":\"7 \",\"pages\":\"12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1742-5573-7-12\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic perspectives & innovations : EP+I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-5573-7-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic perspectives & innovations : EP+I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-5573-7-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

背景:有效应对传染病暴发需要信息充分的应对措施。用于分析暴发数据和估计暴发传播特征的关键参数(包括繁殖数和连续间隔)的定量方法通常假设收集的数据是完整的。在现实中,报告延迟、未发现病例或缺乏诊断疾病的敏感和特异性检测导致病例数报告错误。在这里,我们将深入了解此类报告错误可能对这些关键参数的估计产生的影响。结果:我们发现,当报告的病例比例在研究期间发生变化时,关键流行病学参数的估计值是有偏差的。使用来自墨西哥La Gloria甲型H1N1流感爆发的数据,我们提供了这些参数的估计,考虑到可能的报告错误,并表明如果不考虑报告问题,它们可能有高达33%的偏差。结论:不考虑缺失的数据可能导致对流行病参数的误导性和不准确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reporting errors in infectious disease outbreaks, with an application to Pandemic Influenza A/H1N1.

Background: Effectively responding to infectious disease outbreaks requires a well-informed response. Quantitative methods for analyzing outbreak data and estimating key parameters to characterize the spread of the outbreak, including the reproductive number and the serial interval, often assume that the data collected is complete. In reality reporting delays, undetected cases or lack of sensitive and specific tests to diagnose disease lead to reporting errors in the case counts. Here we provide insight on the impact that such reporting errors might have on the estimation of these key parameters.

Results: We show that when the proportion of cases reported is changing through the study period, the estimates of key epidemiological parameters are biased. Using data from the Influenza A/H1N1 outbreak in La Gloria, Mexico, we provide estimates of these parameters, accounting for possible reporting errors, and show that they can be biased by as much as 33%, if reporting issues are not accounted for.

Conclusions: Failure to account for missing data can lead to misleading and inaccurate estimates of epidemic parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA). Use of the integrated health interview series: trends in medical provider utilization (1972-2008). Social network analysis and agent-based modeling in social epidemiology. The use of complete-case and multiple imputation-based analyses in molecular epidemiology studies that assess interaction effects. Attributing the burden of cancer at work: three areas of concern when examining the example of shift-work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1