{"title":"脑缺血和缺氧时氧合快速无创连续监测。","authors":"John K-J Li, Tijun Wang, Hongjun Zhang","doi":"10.1007/s10558-010-9116-x","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is most sensitively dependent on oxygen to maintain its normal function. Methods to assess the degree of its oxygenation have generally been invasive and indirect. Rapid assessment of brain oxygenation is particularly vital during cerebrospinal ischemia and hypoxia. We have developed a noninvasive electro-optical method using pulsed near-infrared (NIR) light to quantify brain oxygenation during ischemia and hypoxia in anesthetized rabbits. Cerebral ischemia was induced through 30-40 s of bi-lateral carotid artery occlusion. Cerebral hypoxia was induced by varying inspired oxygen levels. The NIR light response to the interventions was expressed in terms of relative absorption (RA). Results showed that our pulsed NIR system could rapidly detect sudden alterations in oxygenation and blood flow to the brain. The response patterns during cerebral ischemia and hypoxia were significantly different, although both decreased brain oxygenation. The overall RA response to ischemia was much faster (in seconds) than during hypoxia (in minutes). These different response patterns can serve as early warning signal of low brain oxygenation and to discriminate the cause of the diminished oxygenation. The present pulsed NIR system is capable to provide a rapid, noninvasive and continuous monitoring of such decreases in brain oxygenation.</p>","PeriodicalId":55275,"journal":{"name":"Cardiovascular Engineering (dordrecht, Netherlands)","volume":"10 4","pages":"213-7"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10558-010-9116-x","citationCount":"4","resultStr":"{\"title\":\"Rapid noninvasive continuous monitoring of oxygenation in cerebral ischemia and hypoxia.\",\"authors\":\"John K-J Li, Tijun Wang, Hongjun Zhang\",\"doi\":\"10.1007/s10558-010-9116-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain is most sensitively dependent on oxygen to maintain its normal function. Methods to assess the degree of its oxygenation have generally been invasive and indirect. Rapid assessment of brain oxygenation is particularly vital during cerebrospinal ischemia and hypoxia. We have developed a noninvasive electro-optical method using pulsed near-infrared (NIR) light to quantify brain oxygenation during ischemia and hypoxia in anesthetized rabbits. Cerebral ischemia was induced through 30-40 s of bi-lateral carotid artery occlusion. Cerebral hypoxia was induced by varying inspired oxygen levels. The NIR light response to the interventions was expressed in terms of relative absorption (RA). Results showed that our pulsed NIR system could rapidly detect sudden alterations in oxygenation and blood flow to the brain. The response patterns during cerebral ischemia and hypoxia were significantly different, although both decreased brain oxygenation. The overall RA response to ischemia was much faster (in seconds) than during hypoxia (in minutes). These different response patterns can serve as early warning signal of low brain oxygenation and to discriminate the cause of the diminished oxygenation. The present pulsed NIR system is capable to provide a rapid, noninvasive and continuous monitoring of such decreases in brain oxygenation.</p>\",\"PeriodicalId\":55275,\"journal\":{\"name\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"volume\":\"10 4\",\"pages\":\"213-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10558-010-9116-x\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering (dordrecht, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10558-010-9116-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering (dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10558-010-9116-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid noninvasive continuous monitoring of oxygenation in cerebral ischemia and hypoxia.
The brain is most sensitively dependent on oxygen to maintain its normal function. Methods to assess the degree of its oxygenation have generally been invasive and indirect. Rapid assessment of brain oxygenation is particularly vital during cerebrospinal ischemia and hypoxia. We have developed a noninvasive electro-optical method using pulsed near-infrared (NIR) light to quantify brain oxygenation during ischemia and hypoxia in anesthetized rabbits. Cerebral ischemia was induced through 30-40 s of bi-lateral carotid artery occlusion. Cerebral hypoxia was induced by varying inspired oxygen levels. The NIR light response to the interventions was expressed in terms of relative absorption (RA). Results showed that our pulsed NIR system could rapidly detect sudden alterations in oxygenation and blood flow to the brain. The response patterns during cerebral ischemia and hypoxia were significantly different, although both decreased brain oxygenation. The overall RA response to ischemia was much faster (in seconds) than during hypoxia (in minutes). These different response patterns can serve as early warning signal of low brain oxygenation and to discriminate the cause of the diminished oxygenation. The present pulsed NIR system is capable to provide a rapid, noninvasive and continuous monitoring of such decreases in brain oxygenation.